
2008  |  	 wileyonlinelibrary.com/journal/mee3� Methods Ecol Evol. 2021;12:2008–2016.© 2021 British Ecological Society

1  | INTRODUC TION

Tree growth is essential for forest management and forest ecosys-
tem research. Growth is the product of several abiotic and biotic 
factors, interacting with a tree and its surroundings through time. 
Tree growth is expressed morphologically and is vital for forest man-
agement because tree size determines timber production capabil-
ity (Monserud, 2003). In the same vein, tree growth is the primary 
driver of forest dynamics because it determines tree crown class 
differentiation, mortality and regeneration, and therefore it is of piv-
otal importance for understanding how trees interact in a dynamic 
ecosystem (Kimmins, 2004).

Stem analysis is a methodology for measuring tree growth. As 
pointed out by Tesch (1980), the study of tree growth is not a re-
cent endeavour, and the first recorded observations of tree growth 

are generally credited to Theophrastus (370–285 B.C.), a student of 
Aristotle. Most trees growing in temperate climates produce a dis-
tinct layer of wood every year, indicating the particular tree's age 
and growth. One layer is formed each year between the bark and the 
previously formed wood. This layer looks like a ring in a cross-section 
cut (or ‘crosscut’) of a trunk. In stem analysis (SA), several wood discs 
are extracted along the stem of a tree. Usually, height is measured, 
and the number of rings present at each disc is counted (incomplete 
SA), although sometimes the radial growth at each disc is also mea-
sured (complete SA). SA provides a record of the height growth of a 
tree and its diameter growth at many points along the stem. SA is the 
measuring technique that offers the most outstanding detail on the 
past growth of several tree-level variables, therefore offering crucial 
useful data for tree growth studies.

Height–age pairs must be derived from the stem analysis data 
to model height growth. The study of tree height growth is crucial 
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Abstract
1.	 Stem analysis allows us to obtain an abundant amount of information on tree 

growth. A couple of algorithms exist to utilize section height and growth ring data 
for reconstructing height and age time-series information.

2.	 I evaluated two alternatives, a well-known and a newly proposed algorithm using 
stem analysis data of four species, including deciduous and evergreen broadleaves 
and a conifer. I reconstructed height–age pairs by both algorithms. I fit height 
growth equations in a mixed-effects model framework for each species, using 
the generated data with the respective algorithm. Comparisons considered confi-
dence intervals of the estimated parameters, as well as regression-based equiva-
lence tests.

3.	 Results showed that the fitted growth models obtained from both stem analysis 
algorithms were statistically equivalent. However, the proposed algorithm is sim-
pler and thus provides a useful alternative to current methods.

4.	 Based on the findings, I recommend using this new stem analysis algorithm to 
reconstruct tree height growth with stem analysis data.
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for understanding competition capabilities and its relationship with 
stand structure and composition (Holste et al., 2011), as well as for 
assessing forest productivity (Salas-Eljatib, 2021a). Growth can be 
depicted as a series of envelopes with different taper and a decreas-
ing number of annual rings as stem height increases (Figure  1). A 
count of the number of rings on a given cross-section gives the tree's 
age above the section. Thus, it indicates the age of the tree at that 
point. If the count is made on a cross-section at ground level, it gives 
the total tree age. A section's height is attained within a period equal 
to the age at the sampling time minus the section ring count. If we 
could obtain a disc exactly at the point in the stem where the growth 
ends for a corresponding time, we would directly know the corre-
sponding height, in this case, equal to the section height (Figure 1a). 
Nevertheless, due to the trees' conical growth pattern, the actual 
height at the age corresponding to the cross-section ring count will 
almost always be located above the measured cross-section (Dyer 
& Bailey, 1987). Let me define the cross-section age as the differ-
ence between the total number of rings at the base of a tree and the 
cross-sectional number of rings. (Figure 1b). Carmean (1972) pointed 
out that the height at the point of sectioning underestimates actual 
height at the presumed age because the section will almost always 
occur at some intermediate point along with the annual leader rather 
than at the terminal bud itself. The actual height for the correspond-
ing age at that cross-section will be at some point above that cross-
section. The exact height or the height of the tip for a corresponding 
age is known as the ‘hidden tip’ (Dyer & Bailey, 1987), as shown in 
Figure 1b.

A couple of algorithms exist for reconstructing tree height–
age data pairs with stem analysis data. From the graphical one of 
Graves  (1906) up to the linear programming-based one of Lappi 
(2006). I classify the stem analysis algorithms into two groups: (a) 
‘age-based’, those that estimate the height corresponding to the 
age of each cross-section, and (b) ‘height-based’, those that esti-
mate the age corresponding to the height of each cross-section. 
The age-based algorithms have received the most attention in 
the literature, and they are subdivided into those that use only 
ring counts (e.g. Carmean, 1972; Fabbio et al., 1994; Lappi, 2006; 
Lenhart, 1972; Newberry, 1991) and those that use also ring 
width (e.g. Kariuki, 2002). Overall, and based on the comparisons 
of Dyer and Bailey (1987), Fabbio et  al.  (1994), Kariuki (2002), 
Lappi (2006), Machado et  al.  (2010), Rayner (1991) and Subedi 
and Sharma (2010), Carmean's height interpolation algorithm has 
performed well in almost all the published research on the topic. 
Regarding the height-based algorithms, Milner (1992) proposed 
one in words, but no further work has been done on this type of 
algorithm.

Dyer and Bailey (1987) pointed out that Carmean's algorithm has 
two assumptions: First, annual height increment is constant for each 
year for which height growth is contained within the section. Second, 
the hidden tip will occur in the middle of a year's height increment. 
While neither assumption is likely to be upheld, it is germane to ex-
amine an alternative approach that does not rely on either. I aim to 
describe the basis of a new stem analysis algorithm and compare it 
against Carmean's algorithm.

F I G U R E  1   Stem analysis basis on a longitudinal split showing the progressive taper development (wood layers) for a 5-year-old tree. (a) 
Horizontal dashed lines represent the ideal location of two cross-sections to accurately reconstruct the tree heights at time 1 (t1) and time 
2 (t2), that is, ht1 and ht2 respectively. (b) In practice, the locations of cross-sections will not coincide exactly with tips. Besides, the height of 
three cross-section (h1, h2 and h3) and the ring count on each cross-section (r1, r2 and r3) are represented. Finally, the length of the hidden tip 
for t2 is also depicted
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2  | MATERIAL S AND METHODS

2.1 | Data

I used stem analysis data of sample trees selected from fixed-area 
sample plots for different tree species. Data were representative 
of broadleaved (two deciduous and one evergreen) and coniferous 
tree species. The species were as follows: (a) Nothofagus dombeyi 
(Coigüe), an evergreen tree species with a wide distribution in 
Chile, being very abundant, especially in the country's southern 
part. (b) Pseudotsuga menziesii (Douglas fir), a conifer native from 
the Pacific Northwest of North America, extensively planted as 
an exotic elsewhere. (c) Nothofagus alpina (Raulí), a deciduous 
tree species that has great potential for forest management and 
high timber value. (d) Nothofagus obliqua (Roble), a deciduous tree 
species as well. The Nothofagus species data are obtained from 
several studies described by Salas-Eljatib (2020) and cover a lati-
tudinal range between 35°50′ and 41°30′S in south-central Chile 
(Figure S1a). In contrast, the Douglas fir data are obtained from the 
study of Monserud (1984) and cover between 42°10' and 49°50' N 
in the Inland Northwest region, northern Rocky Mountains, of the 
United States (Figure S1b).

All the tree-level data were collected from sample plots. For 
the Nothofagus data, these plots were established in mixed-species, 
even-aged, secondary stands dominated by Coigüe, Raulí or Roble. 
Veblen et al.  (1996) provide additional ecological features of these 
forests. Meanwhile, for the Douglas fir data, the plots were estab-
lished in even- and uneven-aged stands (Monserud, 1984). For each 
dataset, dominant trees were selected from fixed-area plots, pro-
vided they were healthy and of good form, of seed origin and belong-
ing to the upper canopy. The selected trees were felled, and after 
measuring DBH (d) and total height (h), cross-sectional discs were 
obtained at several heights along the stem. There were, on average, 
10 sections per tree. Rings were counted in the laboratory. The num-
ber of plots by species is 30, 181, 53 and 62 for Coigüe, Douglas 
fir, Raulí and Roble, respectively, and have between three and four 
sample trees per plot.

The age of a tree is the length of time that has elapsed since the 
germination of the seed or the sprout's budding (Husch et al., 2003). 
The most common dating method for mature trees is to count the 
number of annual growth rings on a transverse section or an incre-
ment core sampled at ground level, that is, at what appears to be the 
root collar (DesRochers & Gagnon, 1997). I computed total age (tot.
age), at the time of sampling by linear extrapolation of ring counts 
of the lowest two sections down to ground level, rounding to the 
nearest integer. This age was used as the time variable for recon-
structing past height growth. As a reference, I also computed the 
breast height age (bha) as the number of rings present at 1.3 m on 
the stem (Table 1).

I tried to include more species in the analysis; however, pertinent 
data from other species were unavailable. The data that could be 
used have some of the following issues: small sample size; does not 
have the minimum information needed, such as the number of rings 

per cross-section; and trees concentrated in a single location, among 
other issues. Nonetheless, obtaining data of this sort is not as easy 
as a user might expect, but is the reality of most research disciplines 
(Poisot et al., 2019).

2.2 | Algorithms for cross-section height–
age adjustment

Before describing the algorithms, I will introduce notation for the 
raw data in a given tree. Notice that I will omit a tree's subscript to 
simplify details: hk, rk and tk are height, number of rings and age at 
the kth cross-section. For these data pairs, the Carmean algorithm 
reconstructs corrected pairs 

(

tk , htk

)

 and the proposed one recon-
structs 

(

thk
, hk

)

. That is to say, the main difference between the two 
algorithms is either reconstructing height at a given rounded time 
(denoted by htk), or reconstructing time at a given height (represented 
by thk). From this point forward, I will refer to Carmean's algorithm as 
ABA (age-based algorithm), because based on age, estimate height; 
and to the proposed algorithm as HBA (height-based algorithm), be-
cause based on height, estimate time. How to compute tk, htk and thk 
is explained in the following sections.

2.2.1 | Carmean (ABA)

Carmean (1972) did not offer a mathematical expression for his algo-
rithm, but Lenhart (1972) did. It can be expressed as follows.

where htk is the estimated total tree height at age tk and hk is the height 
of the kth cross-section. The rest of the terms were described above. 
Therefore, Δhk is the length of the (k + 1)th section and Δrk is the dif-
ference in the number of rings between the k and (k + 1)th sections, 
provided that rk > r(k+1). The age of the tree (associated with the inner-
most ring) at the kth cross-section, tk, is computed as

where tb is the reference age for height reconstruction (e.g. either 
total age or breast height age). Other mathematical details of the al-
gorithm are in Supporting Information Appendix  1. In this regard, it 
is important to point out that it is common practice to interpolate the 
heights to every missing year between sections (using the third com-
ponent of Equation S1). This practice is unsuited because it inflates the 
sample size and smooths the data before fitting a model. The latter's 
problem is those fit statistics measuring deviations about smoothed 
height increment data are misleading and strongly biased (Hasenauer 
& Monserud, 1997). Hereafter Equation (1) defines the ABA, where 
the length of the hidden tip is estimated as half of the periodic annual 
height increment for the kth section.

(1)htk
= hk +

h(k+1) − hk

2
[

rk − r(k+1)

] = hk +
Δhk

2Δrk
,

(2)tk = tb − rk + 1,
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2.2.2 | Proposed algorithm (HBA)

The HBA seeks to estimate the age of each cross-section based 
on the height of that section. The idea is to reduce the calculated 
cross-section age by half a year, instead of increasing the section 
height by half the height increment as in Carmean's algorithm. This 
approach is more straightforward than the ABA; however, no studies 
have focused on its effectiveness or explained its basis. To the best 
of my knowledge, the first reasoning of this kind was suggested by 
Milner (1992). Therefore, in the following, I refine Milner's wording 
by introducing new concepts and proposing a formal notation and 
mathematical expressions.

When having stem analysis data, we observe the height of the 
cross-sections. In this algorithm, I use that height as such, without 
modification. Because of that, I refer to this algorithm as a height-
based one. Instead, I only alter the computation of the age for each 
cross-section. Equation (2) allows obtaining that age for the ABA, 
symbolized by tk. However, given that for the proposed algorithm, 
hk is directly treated as the height of interest, we know that the 
tree's age when was hk tall (symbolized by thk) must be lower than tk.   
Besides, inasmuch as the age difference must be between 0 and 1, 
I think that a uniform distribution is a suitable choice for accommo-
dating its uncertainty, as follows.

where: thk is the age of the tree when was as tall as the height of 
the kth cross-section, uk is a random number from a uniform distri-
bution, uk ∼ U

[

0, 1
]

, E is the expected value operator and the other 
terms were already defined. Equation (3) is the algorithm I propose, 
and hereafter refer to as ‘HBA’ (height-based algorithm). Other 
mathematical details of this algorithm are in Supporting Information 
Appendix  2. It is important to argue that I do not interpolate the 
heights for a given year but the age for a given cross-section height 
only. In summary, although from both ABA and HBA algorithms we 
reconstruct height–age data, they are built from different perspec-
tives. The structure of the constructed data from both algorithms is 
in Table  S1. Furthermore, Figure  2 illustrates both algorithms' dif-
ferences where two cross-sections are measured. In the ABA, the 
estimation acts in the vertical axis (i.e. height); in contrast, the HBA 
acts in the horizontal axis (i.e. age). The reconstructed height growth 
series using both algorithms are represented by species, showing 
a wide variety of shapes, indicating large variability in tree height 
growth (Figure S2).

(3)E
[

thk

]

= tb − rk + 1 − E
[

uk

]

= tb − rk + 0.5,TA B L E  1   Tree sample variables' summary by species. The 
variables are d is the DBH, h is the total height, tot.age is the total 
age and bha is the breast height age

Species Statistic

Variable

d h tot.age bha

(cm) (m) (year) (year)

Nothofagus dombeyi (Coigüe)

(n = 107) Minimum 5.3 9.9 21 15

Maximum 60.2 33.7 71 68

Mean 26.6 19.9 41.1 37.7

CV(%) 19 16.6 15.6 17.3

Pseudotsuga menziesii (Douglas fir)

(n = 312) Minimum 30.5 24.2 54 51

Maximum 95.2 49.4 198 195

Mean 52.3 33.3 120.6 116.4

CV(%) 11.7 9.6 19.9 19.8

Nothofagus alpina (Raulí)

(n = 169) Minimum 5.3 7.1 19 17

Maximum 49.9 31.2 81 76

Mean 24.9 20.3 45.9 42.2

CV(%) 16.2 15.1 17 18.4

Nothofagus obliqua (Roble)

(n = 155) Minimum 7.3 7.9 14 13

Maximum 59.1 37 103 94

Mean 28.8 22.6 45.2 41

CV(%) 19.4 18.3 19.2 19.3

F I G U R E  2   Graphical representation of how the algorithms 
work. Here two measurements for a given tree are represented 
with black dots at heights hk and hk+1. Ages at sections k and k + 1 
are represented by tk and tk+1, respectively, and computed as in 
Equation (2). To illustrate the differences, each year (apart from the 
ones where the cross-sections are obtained) is marked with grey-
dashed vertical lines, and the annual height increments between 
each cross-sections are marked with green-dashed horizontal lines. 
In the ABA (age-based, Carmean), the corresponding height at the 
age tk, that is, htk, is estimated, therefore the pair of reconstructed 
data is 

(

tk , htk

)

, which is represented in red. In contrast, in the HBA 
(height-based), the corresponding age at height hk, that is, thk,  
is estimated, therefore the pair of reconstructed data is 

(

thk
, hk

)

, 
which is represented in blue
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2.3 | Comparisons

To compare the algorithms' performance for correcting the section 
height–age data from stem analysis, we fit the same model (i.e. base 
model) using the two different datasets, one obtained with the ABA 
adjustments and the other with the HBA algorithm. I do so to show 
the effects of the data in the resulting fitted growth models. I repeat 
the following analyses for each species.

2.3.1 | Growth law

I used the following baseline growth function, which as a statistical 
model is represented by.

where hiz is the height for the ith tree at the zth time tiz; while �, � and � 
are parameters and �iz is the random error term. Notice that i = 1, …, n 
and z = 1, …, Ti, where Ti = Ki + 1, and Ki is the total number of discs 
on the ith tree. Therefore, hiTi is the tree's total height at sampling. The 
parameters have the following interpretations (Salas-Eljatib, 2020): � is 
the upper asymptote or maximum level of growth for the state variable 
h, � is a parameter which governs the rate of change or scale parameter 
and � is a shape parameter determining the height of the growth curve 
inflection point. This model is among the most widely used growth 
function to study tree growth (Salas-Eljatib, 2020).

As I have several observations of h over time for the same tree, 
the data have a temporal correlation. To account for this correlation, 
I fit a mixed-effects model. I consider the tree (in each plot) as the 
random factor (i.e. group). I added random effects to one of the pa-
rameters of Equation (4), therefore having different model variants 
(Supporting Information Appendix 3). The random individual effects 
induce an intra-individual correlation structure that accounts for the 
lack of independence among the same tree observations. I fitted 
the mixed-effects models by maximum likelihood and used variance 
functions to model the within-stratum errors' variance structure. 
Since the Nothofagus data come from different studies, I used this 
information as a stratum; meanwhile, the national forest information 
was used as a stratum for the Douglas-fir data. All models were fit-
ted using the nlme package (Pinheiro et al., 2021) implemented in R 
(R Core Team, 2020). All models were compared with the corrected 
Akaike information criterion (AICc). From here, I obtained two mod-
els, one fitted using the ‘ABA-generated data’ and another using the 
‘HBA-generated data’.

2.3.2 | Parameter estimates

To compare the algorithms' difference, I compared the parameter 
estimates obtained for the same model using the generated data. 
This comparison involves comparing the 95% asymptotic confidence 

intervals for each parameter estimate by the type of algorithm used 
to build the height growth series. In this way, I was able to examine 
the sensitivity of parameter estimates to the algorithm for recon-
structing height–age data.

2.3.3 | Equivalence testing

I conducted a regression-based equivalence test within a nonpara-
metric bootstrapping framework. Traditionally, equivalence tests are 
approached similarly as a traditional significant test for the same pa-
rameters, that is, one statistic is tested versus one computed from 
another treatment. However, this approach is not suitable for as-
sessing the prediction performance of models. Robinson and Froese 
(2004) and Robinson et al. (2005) proposed to apply the equivalence 
test in a validation context that has data (i.e. validation sample) that 
are independent of the fitting process (as explained below) and as-
sessing the model in the prediction of the response variable for the 
validation sample. Robinson et al.  (2005) proposed a nonparamet-
ric bootstrap approach which we used in the present research. It is 
essential to clarify that I cannot directly assess equivalence among 
the algorithms because the Carmean one modifies the height data 
while the HBA modifies the age data. Therefore, the two algorithms 
neither share the same value of age nor height, on which a simple 
comparison can be established. I instead compared the predictions 
obtained from the same height growth model but fitted using the 
generated data from each algorithm to the observed height growth. 
All the details on the application of the equivalence testing are given 
in Supporting Information Appendix 4. This testing's main outcome 
is to compute the proportion on which the predictions are within 
the equivalent region; if it is greater than 0.95, I will reject the cor-
responding null hypothesis of dissimilarity at 5% of the significance 
level. That is to say, the predictions of the height growth model fit-
ted with the generated data using the corresponding stem analysis 
algorithm are statistically equivalent to the observed height growth. 
Equivalence testing was carried out using the equivalence R package 
(Robinson, 2010).

2.3.4 | Bias

Apart from testing the equivalence between the algorithms, I also 
compared their absolute bias. For doing so, I have proceeded using 
the following four steps for each species: (a) To create simulated data 
using the growth laws. I generated 1,000 sample trees having six 
cross-sections. I predicted heights for randomly generated rounded 
ages from a uniform probability density function, ranging between 
10 and 200. I predicted using the baseline model and its parameter 
estimates (Table S2). Later, I added to each predicted heights a white 
noise coming from a Gaussian distribution with an expected value 
of 0 and a standard deviation equal to the residual model's standard 
deviation, that is, �̂e. (b) To derive data of height-ring counts using 
both algorithms. (c) To fit the baseline model using the derived data. 

(4)hiz = �
{

1 − e
− �(tiz)

}1∕�

+ �iz,
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(d) To compute the absolute bias of both fitted models in predicting 
the fundamental growth law.

3  | RESULTS

The polymorphic mixed-effect model (Equation S6) had a better fit, 
using as reference the AICc statistic, for both the data generated 
with the ABA and the HBA, as well as for all species (Table 2). Notice 
that comparisons must be only established among fitted models 
using the same data because maximum likelihood-based statistics 
alone are meaningless. As the polymorphic model had a better fit for 
all species, it was used for subsequent analysis.

Fitting the polymorphic model (Equation S6) to height–age pairs 
from the two algorithms using each species stem analysis data re-
sulted in parameter estimates significantly different from zero in 
each case (Figure 3). Confidence intervals (CIs) of all the parameter 
estimates of the height growth models fitted with data generated 
from the two stem analysis algorithms overlapped to a large extent 
(Figure 3). Overlap of CIs of all parameter estimates is almost total 
for Douglas fir and Coigüe. The smaller overlap of CIs occurs for �̂  of 
roble, however it is still greater than 80%.

The null hypothesis (H0) of the equivalence test is equal to the 
statistics being not equivalent to the defined equivalence region. 
As explained above, if the bootstrap CIs are contained within the 
equivalent region, we reject H0; that is, we have strong evidence 

against dissimilarity, favouring equivalence. The equivalence testing 
results are shown in Table  3 for all species. In 100% of the boot-
strap replicates, both estimated parameters, �̂0 and �̂1, of model (S8) 
were contained within their respective equivalence regions, I0 and 
I1 respectively. Although it might seem strange to have 100%, sim-
ilar results had also been reported (e.g. Robinson et al., 2005), but 
more than the value, what is important is to emphasize the strong 
evidence against H0. The bootstrap CI for a 95% confidence level for 
both parameters and all species is contained within their respective 
equivalence regions. Therefore, I reject the null hypothesis of not 
equivalent for both �̂0 and �̂1, and for both all species and the two 
algorithms. Predicted values obtained from both a growth model fit-
ted with data generated with the ABA and the same model but fitted 
with data generated with the HBA are statistically equivalent to their 
respective measured height growth values.

The average bias, an indicator of accuracy, clearly shows that 
the HBA unbiasedly estimated height growth (Table 4). On the other 
hand, the ABA is biased, with a slight (1%) trend towards the over-
estimation. The described pattern is consistent across all the spe-
cies. Regarding the absolute bias, the HBA has a lower value for all 
species as well. These results enhance the difference between the 
two algorithms and favour the HBA.

4  | DISCUSSION

I have presented a pleasingly simple novel method for tree height 
growth reconstruction, which involves preserving the field-
measured height data and estimating age by adding 0.5 year to the 
naive age estimate obtained from ring counts. Though simple, this 
new method gives results that are nearly equivalent to those of the 
slightly more complex Carmean algorithm, and thus the new method 
may be preferred by practitioners.

I fitted the baseline height growth model (Equation 4) in a mixed-
effects framework by allocating random effects to different param-
eters of the model (Equations S5 and S6). The model variant having 
random effects into the � parameter was always the best for all spe-
cies, regardless of the algorithm used to generate the data (Table 2). 
This result agrees with other studies where using the same growth 
model, the same variant, showed better goodness-of-fit indicators 
(García,  1983; Hu & García,  2010). Concordantly, using a reliable 
growth law for modelling the height development of the species 
under study is secure. Indeed, other models can provide better 
prediction capabilities. Still, I aim to use a suitable quantitative tool 
that models the growth rates of the state variable height for further 
analyses.

Hypothesis testing is not usually taking into account when com-
paring modelling approaches. For instance, Lappi (2006) focused on 
only applying a mathematical method to stem analysis data, regard-
less of the statistical implications. Here, I computed the confidence 
interval of the estimated parameters by species and the algorithm 
used to generate the data (Figure 3). Comparing the confidence in-
tervals is essential to assess the null hypothesis of both parameters 

TA B L E  2   Maximum likelihood-based statistic of model variants. 
Each variant represents adding random effects either into the 
asymptote (as in Eq. S5) or into the shape parameter (as in Equation 
S6) of the baseline height growth model (Equation 4). AICc is the 
corrected Akaike information criterion. Notice that comparisons 
based on AICc are only valid among models using the same data. 
That is to say, we can compare the AICs between the anamorphic 
and polymorphic variants but only for a given data generated by a 
specific algorithm

Species Model variant

Algorithm

ABA HBA

AICc AICc

Coigüe

α + ai 4,191.7 4,286.0

β + bi 3,954.1 4,066.0

Douglas fir

α + ai 14,590.0 14,638

β + bi 14,071.0 14,118

Raulí

α + ai 5,771.0 5,900.7

β + bi 5,506.6 5,649.6

Roble

α + ai 6,925.2 7,040.4

β + bi 6,618.4 6,741.1
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being equal and to see the drawn conclusion when hypothesis test-
ing is applied. In this regard, the results clearly showed overlapping 
confidence intervals for the estimated parameters of both data algo-
rithm generated. Therefore, both algorithms would offer almost the 
same precision on these estimated parameters. The hypothesis to be 
tested using the variance components of the parameters will reach 
the same conclusions.

The equivalence testing framework allowed us to perform a re-
liable assessment of two confronting approaches (or algorithms in 
this case). The current research possess difficulties not commonly 
faced when comparing competing models. The stem analysis algo-
rithms reconstruct height–age series (Figure 2; Figure S2); however, 
I lack the real or observed height–age series, a fundamental compo-
nent of any model assessment. Inasmuch as the restriction of the 
absence of actual height–age data, the equivalence testing offers a 
suitable alternative to focus on assessing whether the predictions of 

the fitted models fitted from both height–age series are equivalent. 
Predictions obtained from a fitted model with both algorithms' data 
are statistically equivalent (Figure  3). These results are consistent 
across four species' growth data, one coniferous and three broad-
leafs (two deciduous and one evergreen), spanning a large geograph-
ical area. The calculation of both average bias and absolute bias of 
the algorithms to reproduce the growth laws (Table 4) offers a reli-
able but straightforward alternative to assess them. Again, the HBA 
outperformed the Carmean algorithm.

The HBA is more straightforward than the ABA (Carmean) and 
makes fewer assumptions. ABA is the most widely used stem anal-
ysis algorithm, most likely because of the thorough assessment 
conducted by Dyer and Bailey (1987). Nonetheless, this algorithm 
assumes a constant periodic annual increment in height for the bolt 
between two cross-sections and that the hidden tip is reached at 
half of that annual increment (Figure 2). Both assumptions are barely 

F I G U R E  3   Asymptotic 95% confidence 
intervals for the parameter estimates of 
the polymorphic mixed-effects height 
growth model (S6) by species, using 
height–age data built from applying 
the ABA (age-based, Carmean) and the 
HBA (height-based) algorithms. Notice 
that each column panel of the figure 
represents a parameter estimate, and each 
row panel represents a species
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justified, and they are unreliable. On the other hand, the HBA only 
requires the measured height at a cross-section, and the age for that 
section is obtained just by subtracting 0.5 (Equation 3); therefore, it 
is pretty simple. If a user prefers to try the HBA stochastic version, 
Equation (S3) must be used instead. Although a stochastic version 
of the ABA could be built similarly, the probability density function 
(pdf) for defining the randomness's magnitude and frequency is 
more challenging to justify than a uniform pdf for the HBA. Based 
on the results presented here, I recommend using the HBA to recon-
struct tree height growth with stem analysis data. I have provided 
an R code (see Salas-Eljatib, 2021b) implementing a simple example 
from data of a stem analysis sample tree.

One theoretical mathematical issue of the HBA arises be-
cause it uses a non-integer time. On the contrary, in the ABA, 
only integer times are considered. Therefore, the HBA mimics a 
continuous-time system, concurrently the ABA mimics a discrete-
time system. Height growth occurs mainly in early spring for many 
species, especially those growing in temperate zones (Kimmins, 

2004). In this case, the within-year growth dynamics would be 
flat most of the year. I cannot define a single time associated with 
height (i.e. height did not change during most of the year). The 
HBA, however, does not attempt to represent the seasonal pat-
tern of growth. Despite the baseline height growth model being 
a solution to a differential equation, in applications, I restrict it to 
integer time values. Leary (1985) advocated for similar uses of dif-
ferential equation in forest modelling. In practice, for computation 
purposes, some available alternatives use corrections depending 
upon the time within the year that we measure the state variable. 
Other options are available; regardless, they are well beyond the 
scope of the present paper.

5  | CONCLUSIONS

The stem analysis algorithm presented here increases the flexibility 
of using this technique for reconstructing time-series data on height 
growth. This type of data is essential to many areas of ecology and 
sustainable forest management, and improving their analysis is un-
doubtedly useful. The two algorithms are presented and compared 
using modern and suitable statistical models. The proposed algo-
rithm is simpler, based on fewer assumptions, more straightforward 
than the classical one, and finally yields equivalent results. I finally 
recommend its use.
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Species

�̂0 �̂1

I0 Bootstrap CI I1 Bootstrap CI

Lower Upper Lower Upper Lower Upper Lower Upper

Coigüe

ABA 7.71 12.86 10.78 11.38 0.75 1.25 0.97 1.07

HBA 7.52 12.54 10.49 11.09 0.75 1.25 0.97 1.06

Douglas fir

ABA 15.37 25.62 19.25 19.77 0.75 1.25 0.87 0.92

HBA 15.27 25.45 19.12 19.63 0.75 1.25 0.88 0.91

Raulí

ABA 7.54 12.56 9.54 9.98 0.75 1.25 0.936 1.00

HBA 7.35 12.25 9.28 9.72 0.75 1.25 0.943 1.03

Roble

ABA 8.51 14.18 10.27 10.78 0.75 1.25 0.86 0.95

HBA 8.28 13.80 9.96 10.46 0.75 1.25 0.87 0.94

TA B L E  3   Summary of equivalence-
based regression results by species. The 
equivalence region (ER) for the intercept 
�̂0, termed I0, was set to the mean 
measured height ±10%. The ER for the 
slope �̂1, termed I1, was set to 1 ± 0.25. 
The 95% bootstrap-based confidence 
intervals (CI) were computed for both 
�̂0 and �̂1. Notice that the proportion 
of times that each of these parameter 
estimates were contained within the 
respective ER was 1 for all the cases

TA B L E  4   Mean bias and absolute bias of the stem analysis 
algorithms by species

Species Algorithm Bias (%)
Absolute 
bias (%)

Coigüe ABA −0.9063 9.0831

HBA −0.0105 9.0535

Douglas fir ABA −1.2751 15.1443

HBA 0.0217 15.0737

Raulí ABA −0.9506 8.1791

HBA −0.0085 8.1404

Roble ABA −0.9783 8.8320

HBA −0.0181 8.7921
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Appendix 1: Derivation of the Carmean algorithm
This algorithm can be expressed as follows

htk+j = hk +
h(k+1)−hk

2[rk−r(k+1)]
+ (j− 1)

h(k+1)−hk

rk−r(k+1)
,

= hk +
h(k+1)−hk

rk−r(k+1)

(
j− 1

2

)
, (S1)

where: htk+j is the total tree height at age tk+j and hk is the height of the kth cross-section associated with the jth inner-most ring. The rest of the
terms were described above. Notice that Eq. (S1) has three components: the first is the cross-section height; the second estimates the length of the
hidden tip for the inner-most ring; and the third one interpolate the heights for each ring present at that section but different from the inner-most
one.
As explained in the paper, using Eq. (S1) is possible to interpolate the heights to every missing year between sections, however, I do not recommend
to do so. Instead, a user should only use j = 1, thus we will reconstruct the height-age pair of data for the inner-most ring at each kth cross-section.
Then (S1) becomes

htk = hk +
(

1
2

) h(k+1)−hk

rk−r(k+1)
= hk +

(
1
2

) ∆hk
∆rk

, (S2)

where: ∆hk is the length of the (k + 1)-th section and ∆rk is the difference in number of rings between the k and (k + 1)-th sections, provided
that rk > r(k+1).

Appendix 2: Some additional details on the proposed algorithm
Here the idea is to estimate the age for a giving cross-section, as follows

thk
= tb − rk + 1− uk, (S3)

where: thk
is the age of the tree when was as tall as the height of the k-th cross-section, and uk is a random number from a uniform distribution,

uk ∼ U[0, 1]. Eq. (S3) is a stochastic algorithm to obtain thk
. A deterministic version of it, is obtained by taking the expected value of thk

as

E
[
thk

]
= tb − rk + 1− E [uk] = tb − rk + 0.5, (S4)

which is the algorithm I propose.

Appendix 3: Growth modelling
Two variants of (4) were fitted depending on which parameter I included the random-effects. If the random-effects are added to the asymptote of
the model, α, anamorphic curves are produced with the fitted model. That is, the height-growth curve shape does not change depending on the
site where the tree is growing. On the other hand, if the random-effects are added to β, so-called polymorphic curves are produced with the fitted
model. That is, the height-growth curve shape changes depending on site quality.
The anamorphic height growth equation is the following mixed-effects model

hiz = (α+ ai)
{

1− e−β(tiz)
}1/γ

+ εiz, (S5)

ai ∼ N
(
0, σ2

a

)
,

εiz ∼ N
(
0, σ2

g

)
,
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and the polymorphic model is

hiz = α
{

1− exp[−(β + bi)tiz]
}1/γ

+ εiz, (S6)

bi ∼ N
(
0, σ2

b

)
,

εiz ∼ N
(
0, σ2

g

)
.

All the models were fitted allowing a different variance for the error term per gth-stratum.

Appendix 4: Equivalence testing details
Because of some typographical errors in Robinson et al. (2005), I explain in detail here the procedure that I carried out for the equivalence testing.
Notice that the procedure is repeated for each generated data set of height-age pairs using the corresponding algorithm. The procedure is as
follows,

1. Randomly select a validation sample of trees (50 trees for the Nothofagus species and 100 for Douglas-fir) of the generated data.

2. Decide on an anamorphic or polymorphic growth model that seems to better describe the height growth of trees, and obtain predictions
(̂y) by only using the fixed-effects parameters for the validation data set.

3. Subtract the mean prediction (̂y) from every prediction, then having a shifted-predicted variable that I can denote ¨̂yi(z), as follows

¨̂yi(z) = ŷi(z) −
1

nv

∑
i=1

ŷi(z) = ŷi(z) − ŷ, (S7)

where: ŷi(z) is the prediction for the ith tree in a single given zth time (only a single observation per tree was considered for this analysis);
i = 1, · · · , nv , and nv is the validation sample size.

4. Establish regions of equivalence or non-practical differences for the shifted intercept and for the slope as follows.
- I0 = ȳ ± 10% for the shifted intercept, and
- I1 = 1.0± 0.25 for the slope.

5. Bootstrapping.

(a) Select with replacement nv pairs of data.

(b) Fit a simple linear regression model between observed and shifted-predicted values as follows

yi(z) = φ0 + φ1¨̂yi(z) + εi (S8)

Notice that the shifting explained above is done in order to guarantee indepence between intercept and the slope of (S8) (Robinson
et al. 2005).

(c) Count whether or not:
i. the φ̂0 is within the interval of equivalence for the intercept I0

ii. the φ̂1 is within the interval of equivalence for the slope I1

6. Repeat B times step No. 5. I use B = 10, 000.

7. Compute the proportion of times that φ̂0 ⊂ I0 and that φ̂1 ⊂ I1.

If the proportions computed in [7] are greater than 0.95 I will reject the corresponding null hypothesis of dissimilarity at 5% of significance level.
That is to say, the predictions of the height growth model fitted with the generated data using the corresponding stem analysis algorithm are
statistically equivalent to the observed height growth.
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(a) (b)

FIGURE S1 Study areas of the data. (a) Map of south-central Chile from 35◦50’ to 41◦30’ S, the temperate forests of Nothofagus alpina-N. dombeyi-
N. obliqua (green), the stem analysis sample plots (black circles), and the major cities are also shown. (b) Map of the Inland Northwest region in the
United States of America, northern Rocky Mountains, covering a a latitudinal range between 42◦10’ to 49◦50’ N.

TABLE S1 Data structure of height-age pairs when using the ABA (age-based, Carmean) and the HBA (height-based) algorithms. K is the total
number of disk for an hypothesized sample tree, tb and h are both the age and height of the tree at sampling.

Algorithm
Data ABA HBA

Section Height Number of rings Age(1) Height(2) Age(3) Height
1 h1 r1 t1 ht1 th1

h1

2 h2 r2 t2 ht2 th2
h2

3 h3 r3 t3 ht3 th3
h3

...
...

...
...

...
...

...
K hK rK tK htK thK

hK

K + 1 – – tb h tb h

(1) obtained as in Eq. 2, (2) obtained as in Eq. 1, (3) obtained as in Eq. 3
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FIGURE S2 Tree height growth series of sample trees by species, as obtained from the ABA (age-based, Carmean) and the HBA (height-based)
algorithms. Successive observations on the same tree are joined by lines.

TABLE S2 Parameter estimates for the growth law, i.e., the baseline model.

Species Parameter

α̂ β̂ γ̂ σ̂e

Coigue 31.562 0.0307 1.3538 2.6624
Douglas-fir 36.578 0.0198 1.3829 4.2741
Rauli 33.845 0.0227 1.1995 2.2955
Roble 38.183 0.0239 1.2551 2.8260


