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Abstract. Unique combinations of geographic and environmental conditions make quanti-
fying the importance of factors that influence forest productivity difficult. I aimed to model
the height growth of dominant Nothofagus alpina trees in temperate forests of Chile, as a proxy
for forest productivity, by building a dynamic model that accounts for topography, habitat
type, and climate conditions. Using stem analysis data of 169 dominant trees sampled through-
out south-central Chile (35°500 and 41°300 S), I estimated growth model parameters using a
nonlinear mixed-effects framework that takes into account the hierarchical structure of the
data. Based on the proposed model, I used a system-dynamics approach to analyze growth
rates as a function of topographic, habitat type, and climatic variability. I found that the inter-
action between aspect, slope, and elevation, as well as the effect of habitat type, play an essen-
tial role in determining tree height growth rates of N. alpina. Furthermore, the precipitation in
the warmest quarter, precipitation seasonality, and annual mean temperature are critical cli-
matic drivers of forest productivity. Given a forecasted climate condition for the region by
2100, where precipitation seasonality and mean annual temperature increase by 10% and 1°C,
respectively, and precipitation in the warmest quarter decreases by 10 mm, I predict a reduc-
tion of 1.4 m in height growth of 100-yr-old dominant trees. This study shows that the sensitiv-
ity of N. alpina-dominated forests to precipitation and temperature patterns could lead to a
reduction of tree height growth rates as a result of climate change, suggesting a decrease in car-
bon sequestration too. By implementing a system dynamics approach, I provide a new perspec-
tive on climate-productivity relationships, bettering the quantitative understanding of forest
ecosystem dynamics under climate change. The results highlight that while temperature rising
might favor forest growth, the decreasing in both amount and distribution within a year of pre-
cipitation can be even more critical to reduce forest productivity.
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INTRODUCTION

Site productivity is crucial for scientific understanding
of forest dynamics, as well as for forest management.
Productivity is the production of biomass per unit time,
in a population, trophic level or an ecosystem (Kimmins
2004). Meanwhile, forest site productivity is a quantita-
tive estimate of the potential of a unit of area to produce
plant biomass (Skovsgaard and Vanclay 2008), implying
that a given forest could realize a part of this potential.
No valid silvicultural decision should be made without
reference to site productivity and other site conditions
(Daniel et al. 1979, Oliver and Larson 1996), thus, it is
relevant for sustainable forest management. As tree
growth depends on site productivity, the structure and

composition of forests are influenced by it, as well as the
change of forests through time; therefore productivity
also influences forest dynamics.
The most-used index of productivity in forests

assessment is the dominant height of a stand at a ref-
erence or base age because of its independence to
stand density (Tesch 1980, Garcı́a 1983), which is
widely known as “site index”. Although site index does
not reflect the driving factors of site productivity
(Sammi 1965), it is a robust variable to gauge site pro-
ductivity, being widely used in the world. Hence, site
index had been shown to be a relevant artifact for esti-
mating forest site productivity at a lower cost and fas-
ter than by actually measuring biomass productivity.
Furthermore, dominant trees capture important eco-
logical features for providing ecosystem services, such
as carbon sequestration (Luyssaert et al. 2008,
Stephenson et al. 2014) and wildlife habitat (Franklin
et al. 1987, Gustafsson et al. 2012), hence being
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relevant to be used as reference trees for forest produc-
tivity assessment.
In forest science, the concept of site productivity was

long treated as a static part of forest ecosystems, since
although it was recognized that productivity depended
on topography, vegetation, and climate, this last factor
was mostly considered as fixed in the literature (Ass-
mann 1970, Daniel et al. 1979, Oliver and Larson 1996).
Nowadays, however, because of climate change, I have
realized that productivity would not remain constant,
even at a fixed location. This turn from considering cli-
mate as constant when studying site productivity to a
variable climate is likely one of the most relevant para-
digm shifts in forest sciences. That is to say, site produc-
tivity is a dynamic component of forest ecosystems.
Quantifying the relationship between climate and pro-

ductivity is a long endeavor in ecological studies. Estimat-
ing the effects of climate change on productivity is still an
open question for natural ecosystems such as the marine
(Free et al. 2019) and the forest (Morin et al. 2018) ecosys-
tems. Several challenges are faced when studying forest
productivity (Kimmins 1985), but here I only stress some
of them. Not only has the space-for-time assumption been
questioned in ecology (Johnson and Miyanishi 2008), but
forest dynamics trajectories are also quite uncertain even
in close locations (Norden et al. 2015). I think that this
uncertainty in predicting forest ecosystem dynamics could
be largely due to climate change patterns. Manifold
attempts have been pursued in studying the relationship of
forest productivity and potential drivers representing vege-
tation (Daubenmire 1952, 1961, Monserud 1984), topo-
graphic variables (Myers and van Deusen 1962, Monserud
et al. 1990), and climate (Kimmins et al. 1990, Wang et al.
2004) features. Some other studies have focused on physio-
logical approaches (Mäkelä 1986, Valentine 1997, Guerri-
eri et al. 2019) not pursued here because they rely heavily
on experimental (i.e., controlled) data, and are hard to
generalize because of these restriction, especially in regions
and ecosystems where this type of data is not available.
Identifying the drivers of forest productivity is an

intricate task. Determining the main factors (i.e., dri-
vers) affecting forest productivity depends on the device
used for assessing their importance (Healy et al. 2008,
Liang et al. 2015, Gustafson et al. 2017, Hennigar et al.
2017, Chen et al. 2018, Jactel et al. 2018, Morin et al.
2018, Sheng and Xu 2019). Consequently, the statistical
models to be used are core for hypothesis testing; how-
ever, not much attention is tailored toward that end. In
this regard, several research claims are based on simply
comparing means and fitting linear models, although
nonlinearity is an intrinsic feature of forests (Stone and
Ezrati 1996, Cushing et al. 2003, Messier et al. 2016),
among other details that are important to be considered
(Ellison and Dennis 1996). As a better way to represent
the interaction between topographic variables, Beers
et al. (1966) and Roise and Betters (1981) used trigono-
metric functions, and Stage and Salas (2007) went fur-
ther and proposed related alternatives for hypotheses

testing. In addition, forests are structured systems, where
many factors are interacting at different levels, so it is
important to takes into account the hierarchical struc-
ture of the data being used to build models when study-
ing drivers that affect forest productivity. Overall,
unravelling the effects of drivers on the climate-produc-
tivity relationship requires both data covering a wide
range of environmental conditions and suitable statisti-
cal models to assess the uncertainty associated with
hypotheses testing.
Although there are studies on some aspects of

Nothofagus-dominated forests in Chile, rather few pro-
vide quantitative models to support scientific under-
standing and management decisions. The Nothofagus
genus, the Southern Hemisphere beech, is often used as
a key Gondwanan link in biogeographical studies and is
core for the native forests of Argentina, Australia, Chile,
and New Zealand (Veblen et al. 1996). Several studies
have been carried out in forests dominated by Nothofa-
gus alpina, N. dombeyi, and N. obliqua on forest (Veblen
et al. 1981, Donoso 1995, Lusk and Ortega 2003, Poll-
mann and Veblen 2004, Salas et al. 2006), species autoe-
cology (Donoso 2006), genetics (Donoso et al. 2004),
regeneration (González et al. 2002), and silviculture
(Grosse and Quiroz 1999). Nonetheless, research on
Nothofagus forests productivity, a key component to
understanding forest dynamics, has been mostly studied
using simple descriptive approaches (Donoso et al. 1993,
Echeverrı́a and Lara 2004), modeling efforts either based
on rather small sample sizes (Trincado et al. 2002) or
focused on small geographic regions (Salas and Garcı́a
2006, Esse et al. 2014). Hence, further analysis of the
productivity of Nothofagus forests is needed. In the pre-
sent study, using a system-dynamics approach based on
efficient statistical estimation of model parameters, I
focused on quantifying the climate–productivity rela-
tionship and testing how this relationship is affected by
climate change. I used stem analysis data of dominant
Nothofagus alpina trees in its entire distribution in
south-central Chile. This species is one of the most
important species of Patagonian temperate forests due
to its wood quality and its relatively fast growth (Cub-
bage et al. 2007, Hildebrandt et al. 2010, Torales et al.
2012). To my knowledge, the study is the most compre-
hensive research on the climate–productivity relation-
ship of temperate forests of Chile and offers a
quantitative approach based on field data that could be
useful elsewhere as well.

MATERIALS AND METHODS

Data

The population under study are the secondary forests
belonging to the N. obliqua, N. alpina, and N. dombeyi
forest type described by donosobtemp in south-central
Chile between 35°500 S and 41°300 S latitude. This area
covers the distribution of the most common forests of
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this forest type (Fig. 1), occupying 1,557,933 ha. These
forests are even aged, and the Nothofagus predominantly
occurs in the upper canopy. I used stem analysis data of
sample N. alpina trees selected from 53 fixed-area sample
plots previously established in randomly selected loca-
tions. Between two and five trees were felled per sample
plot.
Data sources are fully described in Salas-Eljatib (2020).

Dominant trees were selected for stem analysis, provided
they were healthy and of normal shape, of seed origin, and
belonging to the upper canopy. After measuring diameter
at breast height (d) and total height (h), the selected trees
were felled and cross-sectional disks were obtained at

stump height (10–40 cm) and breast height (1.3 m), plus
additional disks evenly spaced between breast height and
total height. The average number of sections per tree was
10. Rings were counted in the laboratory. I reviewed the
original stem analysis trees data set in order to detect miss-
ing rings counts, same ring counts in successive sections,
and non-decreasing ring counts between successive height
cross-sections.
Stem analysis allows us to reconstruct the past height

growth. Heights and ring counts from cross-section disks
are used to calculate height age pairs, and by this, I am
able to reconstruct tree height growth. I used breast
height age (bha), the number of complete rings at breast

FIG. 1. Map of south-central Chile from 35°500 S to 41°300 S. The temperate forests of Nothofagus alpina–N. dombeyi–N. obliqua
(green) are the population under study and they cover 1,557,933 ha. The stem analysis sample plots (black circles) and the major
cities are also shown.
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height, instead of total age as the time variable for the
modeling efforts, based on the results of Salas and
Garcı́a (2006). I used the algorithm proposed by Salas-
Eljatib (2021a) for obtaining the height–bha data pairs
for each tree. Notice that, with this algorithm, I do not
interpolate the heights for a given year, but the age for a
given cross-section height only. Aiming to detect past
suppression of trees, I carried out a screening process of
plotting height growth series by tree and plot. I dropped
the trees showing clear past suppression in height
growth. The data spans trees of juvenile ages up to 80 yr
old with total heights between 7 and 31 m (Table 1).
Height growth series of dominant trees show a large
variation (Appendix S1: Fig. S1) depicting the natural
differences in site conditions.
Stem analysis trees were collected from sample plots,

which is a key feature for growth modeling because I am
able to relate tree growth with biogeoclimatic variables
measured at each sample plot. Unfortunately, the field
data lack complete coverage of biogeoclimatic variables.
As a way of overcoming this issue, I imputed the following
three types of site variables using remote sensing tools as
follows:

(1). Vegetation classification. Although there are several
vegetation classifications of Chile, I use the vegeta-
tion belts classes of Luebert and Pliscoff (2006),
which are ecological units that can be cartographi-
cally represented according to bioclimatic variables
and vegetative attributes of the territory. Both vege-
tation classifications are available in GIS format.

(2). Topographic variables. I acquired continuous sur-
face elevation data at a 30 m spatial resolution,
derived from the ASTER global digital elevation
model, for imputing elevation, aspect, and slope for
sample plots lacking these variables. From here, I
obtained the variables slope, aspect, and elevation.
Notice that I only impute these variables for those
sample plots with missing information (i.e., 20%).
Similar approaches, and resolution, have been also
used in other studies to obtain the topographic vari-
ables hanberry14.

(3). Climatic variables. Raster images of climate vari-
ables were obtained from the climate layers (climate
grids) provided by WorldClim (Hijmans et al.

2005). Although the WorldClim-based data set does
not cover Chile intensively, Luebert and Pliscoff
(2006) found this climate model is reliable when
compared to some weather stations data in Chile.
Ergo, WorldClim imputed variables are commensu-
rate for the present study and have also successfully
used worldwide (Bowman et al. 2014, Madrigal-
González et al. 2016, Chen et al. 2018) and in Chile
(Luebert and Pliscoff 2006, González et al. 2013).
Nineteen bioclimatic variables are available from
WorldClim. These represent annual trends (e.g.,
mean annual temperature, annual precipitation),
seasonality (e.g., annual range in temperature and
precipitation), and extreme or limiting environmen-
tal factors (e.g., the temperature of the coldest and
warmest month, and precipitation of the wet and
dry quarters). A quarter is three months (1/4 of the
year). By using the imputed mean climate variables
to each sample plot, I allow spatial climate varia-
tions between sites. For this study, where the cli-
matic layers had different spatial resolutions; the
values were resampled using a spline interpolation
method to a pixel size of 30 m.

Modeling strategy

I used a growth rate model for height that is a linear
differential equation with a power transformation, as
follows:

dhγ

dt
¼ β αγ�hγð Þ (1)

where h is tree height, t represents time, and α, β, and γ
are parameters having the following interpretations: α is
the upper asymptote or maximum value for the state
variable h (i.e., maximum height), β is a parameter that
governs the rate of change (Garcı́a 1983) or scale param-
eter, and γ is a shape parameter. The asymptote of the
model α is the maximum height, not only a parameter
having a physical interpretation, but also a functional
trait (Kempes et al. 2011) that captures important varia-
tion in plant strategy and function (Richardson et al.
2013). As shown by Salas-Eljatib (2020), a solution of
Eq. 1 is

TABLE 1. Tree and cross-section-level variables summary.

Statistic

Tree (n = 169) Cross-section (n = 1,628)

d (cm) h (m) age (yr) bha (yr) h0 (m) dt (yr) pai (m/yr)

Minimum 5.3 7.1 19 17 0.3 0.6 0.086
Maximum 49.9 31.2 81 76 26.3 11 1.961
Mean 24.9 20.3 45.9 42.2 8.424 2.015 0.561
Median 25 21 46 42 8.3 2 0.485
CV (%) 16.2 15.1 17 18.4 22.945 9.857 15.407

Note: d is diameter at breast height, h is total height, age is total age, bha is breast height age, h0 is height at initial time of a
period, dt length of a period, and pai is periodic annual height increment.
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h¼ αf1�½1� h0=αÞγ exp½ ��β t� t0ð Þð �g1=γ (2)

where h is height at time t or height at the end of a per-
iod and h0 is height at time t0 or height at the beginning
of a period. The period length is obtained by t − t0. As
pointed out by Salas et al. (2008), the height increment
model of Eq. 2 does not depend on age, uses data having
different period lengths, and can predict height incre-
ment for different period lengths. This is a nonlinear
model used successfully for modeling tree growth in
terms of several variables (Garcı́a 1983, Valentine 1997).
The data are temporally correlated and are hierarchi-

cally nested. Each sample tree has several observations
of height over time (i.e., temporally correlation), and is
part of a sample of trees collected from the same sample
plot (i.e., trees nested within plots). The grouped nature
of these data, with repeated measures on each subject at
different times, violates the basic assumption of indepen-
dence that underlies a simple regression model (Pinheiro
and Bates 2000). In order to account for the temporal
correlation of the data and their hierarchical structure, I
fit the height growth model (Eq. 2) using a nonlinear
mixed-effects model. I consider the trees nested within
plots as a random factor. Now, I rewrite Eq. 2 by adding
the corresponding index-notation as follows:

hijk¼ αf1�½1� hij k�1ð Þ=αÞγ exp½ ��β tijk� tij k�1ð Þ
� �� �g1=γþ ɛijk,

(3)

where hijk is the height in the ith plot for the jth tree at
the kth time and hij(k−1) is the height of the same tree at
time k − 1, that is to say, for a given period of growth
for a tree, hijk and hij(k−1) are the height at the end and at
the beginning of the period, respectively, or h and h0
when not considering subscripting the data structure.
The period length is given by tijk − tij(k−1), where tijk and
tij(k−1) are the time at the end and at the beginning of the
period, respectively, or t and t0 when not considering
subscripting. The stochastic element ϵijk is included in
Eq. 3 in an additive fashion, intending to recognize that
the model is not deterministic, except on average, i.e.,
the expected value.
Where to allocate the random effects in a model is not

straightforward. I tested all possible combinations in
Eq. 3. For instance, the full-model variant is where all
the fixed-effects parameters of Eq. 3 have random effects
as shown in Eq. 4

whereN represents a Gaussian probability density func-
tion. I used variance functions to model the variance
structure of the within-group errors (Pinheiro and Bates

2000). All the models were fitted allowing a different
variance for the error term per stratum G (i.e., each data
set source). To achieve identifiability of the different
variance errors by stratum, I follow Pinheiro and Bates
(2000), imposing the restriction that δ1 = 1, i.e., for stra-
tum 1, so that δl, l = 2, . . ., S represent the ratio between
the standard deviation of the l stratum and the first stra-
tum. I fit the mixed-effects models by maximum likeli-
hood, followed by the best linear unbiased predictors
(BLUP; Robinson 1991) of the random effects. All mod-
els were fitted using the nlme package (Pinheiro and
Bates 2000) implemented in R (R Core Team 2020). The
fit of model variants was assessed by comparing the
Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC).

Predicting the random effects: biogeoclimatic factors
submodels

After selecting the more suitable model variant of
height growth, I explored predicting the random effects
by relating them to biogeoclimatic variables (i.e., at the
plot level). First, I explored the relationship of these ran-
dom effects and the potential predictors, and later, built
relationships of the following type:

REi ¼ f Habi,Topo:vari,Clim:varið Þ (5)

where: REi is the random-effect for the ith plot; f(�) is a
functional form; and Habi, Topo.vari, and Clim.vari rep-
resent variables related to habitat type, topography, and
climate, respectively. Note that depending on the height
growth model chosen we can have random-effects added
to more than one parameter; therefore, more than one
relationships among random-effects and biogeoclimatic
variables were needed. I termed Eq. 5 as a biogeoclimatic
factors submodel that predicts the random effects or
deviations of the estimated parameters of the height
growth model as a way of representing the effects of
topographic and climatic factors on tree height growth.
The topography-related variables are mainly used as sur-
rogates for radiation and moisture (Pokharel and Froese
2009). Notice that I did not use edaphic variables as in
Thiers (2004). However, I expect that the vegetation
classes would represent most of the edaphic effects at
macro-region levels, because of their relation with both
longitudinal and latitudinal changes of soils in Chile.

Indeed detailed edaphic variables could be used for rep-
resenting microsite variation, but that goes beyond the
scope of the present research. For f(�) in Eq. 5, I used

hijk ¼ αþaiþa j,i
� �

1� 1� hij k�1ð Þ
αþaiþa j,i

� �γþciþc j,i

exp½ �� βþbiþb j,i
� �

tijk� tij k�1ð Þ
� �� �	 
1= γþciþc j,ið Þ

þ ɛijk

ai ∼N 0,σ2a
� �

; bi ∼N 0,σ2b
� �

; ci ∼N 0,σ2c
� �

;
a j,i ∼N 0,σ21

� �
; b j,i ∼N 0,σ22

� �
; c j,i ∼N 0,σ23

� �
;

ɛijk ∼N 0,Var ɛijk
� �� �

; Var ɛijk
� �¼ σ2δ2Gijk

:

(4)
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statistical linear models considering several combination
of biogeoclimatic variables as predictors, ranging from
the simple addition of them to a linear equation to the
model proposed by Stage and Salas (2007), which takes
into account the interaction of slope, aspect, and eleva-
tion by having trigonometric transformation of vari-
ables. This equation has been used with success in other
studies as well (Salas et al. 2008, Battles et al. 2009,
Liang and Zhou 2010, Liang 2012, Hanberry et al. 2014,
Mittanck et al. 2014, Shi et al. 2014, Oke and Thompson
2015, Young et al. 2017, Lochhead et al. 2018, Wether-
bee et al. 2020). The mathematical form of this model is
given in Appendix S1: Eq. S.1.

Behavior analysis

I examined the behavior of the model in a dynamic sys-
tem framework. This is a continuous-time dynamical sys-
tem model, where the differential equation of height (Eq.
1) is the core of it. The system is represented as follows:

dh
dt

¼ f θ̂,h, ~REθ̂

� �
(6)

wherebθ is a vector containing the estimated model coef-
ficients (i.e., α̂, β̂, γ̂), h is the height of a given dominant

tree, and eREθ̂ are the predicted random-effects of the
fixed-effects estimated parameters using Eq. 5. Thus, the
height growth rate (i.e., dh/dt) for dominant trees is a
function of biogeoclimatic factors.
For instance, let’s assume that the random effects are

allocated to both the α and β parameters of Eq. 3. I
would need to have a model that predicts the random
effects of each parameter, i.e., ~̂a and ~̂b, respectively. From
here, I redefine these two parameters as

α0 ¼ α̂þ ~̂ai (7)

β0 ¼ β̂þ ~̂bi (8)

where: α̂ and β̂ are the estimated fixed-effects parame-

ters; and ~̂ai and ~̂bi are the predicted random-effects
obtained from the corresponding biogeoclimatic factors
submodel (Eq. 5). The above ideas are represented in a
dynamic system diagram to identify the inputs, outputs,
and relationship of the elements of the system under study
(Fig. 2a). Later, I solved the differential equation model of
the dynamic system by setting initial conditions
(h0 = 1.3 m and t0 = 0.5 yr) and values for the biogeocli-
matic factors. Finally, I represent the resulting growth

FIG. 2. Dynamic system diagrams. State variables are epitomized by boxes, derivatives by tick arrows with control valves, and
the dependence of rate on state variables by curved arrows, meanwhile the remaining elements are constants. Notice that alpha0 and
beta0 represents α’ (Eq. 7) and β’ (Eq. 8), respectively. (a) A height growth rate model represents the dynamic system as a differential
equation and constant levels for input variables. The growing condition scenarios are defined by varying conditions in some input
factors, such as (b) habitat types, (c) elevation and aspect, and (d) precipitation in the warmest quarter, precipitation seasonality,
and mean annual temperature. A variable in a black box means that different values of it were used. Variables are Ele, elevation;
Asp, aspect; Slo, slope; Hab, habitat; Ppt, precipitation; Temp, temperature; h, height; dh/dt, height growth rate.
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trends exploiting the mathematical features of differential
equations in forest ecology (Pommerening and Muszta
2015, Salas-Eljatib 2020), by plotting the growth trajec-
tory and the growth rates against time and size.
Based on the dynamic system, I created three growing-

conditions scenarios to assess the changes in forest pro-
ductivity. These scenarios are a result of varying condi-
tions of some biogeoclimatic factors. In the first scenario,
I only change the habitat type, by assessing the system
under the following habitat types: N. dombeyi–Eucryphia
cordifolia , N. alpina–N. dombeyi, N. alpina–N. obliqua, and
N. alpina–Dasyphyllum diacanthoides (Fig. 2b). In the sec-
ond scenario, I varied both aspect (i.e., north and south)
and elevation (300 and 800 m above sea level), generating
four combinations of these two factors (Fig. 2c). In the
last scenario, as a way to represent climate change effects
on forest productivity, I varied the climate variables,
depicting the following three climate scenarios: no change
at all; a decrease of 10 mm of the precipitation in the
warmest quarter and increase of a 10% in precipitation
seasonality; and a decrease of 10 mm of the precipitation
in the warmest quarter, an increase of a 10% in precipita-
tion seasonality, and an increase of 1°C in mean annual
temperature (Fig. 2d). These changes in climatic variables
were derived from the IPCC work for South America
(Christensen et al. 2007), and the values are within the
range forecasted for this area for 2100.

RESULTS

Height growth model

Maximum –likelihood–based statistics comparison
among all the possible height-growth-model variants show
that the full model had the best fit (Appendix S1:
Table S1). However, the random effects for γ are highly
correlated with those for α or β (Appendix S1: Fig. S2), a
condition that must be avoided (Pinheiro and Bates 2000).
Thus, I selected the model having random effects in α and
β (variant α, β in Appendix S1: Table S1). The estimated
parameters for the growth model are consistent with the
ecological features of the species (Table 2). Besides, a 95%
confidence interval for the fixed-effects parameters (not
shown here) do not include zero, showing that are statisti-
cally different from zero.
I suspect that h changes in time or depending on h0.

That is to say that values of h that are close to h0 (as
proxy for time) within a tree are probably correlated. I
examined the autocorrelation of the residuals within
trees (Appendix S1: Fig. S3) and, based on this, I argue
that I have removed the correlation by accounting for
the hierarchical structure of the data using a random-ef-
fects modeling framework.

Biogeoclimatic factors submodels

I evaluated several alternatives for modeling the ran-
dom effects of the height-growth model, given the

relationship between the random effects and predictor
variables such as the geoclimatic variables (Fig. 3) and
the vegetation classification proposed by Lubert and
Pliscoff (2006). I selected the following submodels for
each random effect:

b̂i ¼ τ0þτ1Ppseasiþτ2Pptwqiþτ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pptwqi

p
þτ4Tempi

þτ5Temp2i þ ɛi (9)

âi ¼ f ~̂bi,Habi,Elei,Aspi,Sloi
� �

þ ɛi (10)

where b̂i and âi, are the ith predicted (BLUP) random
effects for the estimated parameters bβ and bα, respec-
tively. Meanwhile Ppseas is the precipitation seasonality
(coefficient of variation within a year); Pptwq is the pre-
cipitation of the warmest quarter; Temp is the mean
annual temperature; Hab is the vegetation belt, or habi-
tat type; Ele is elevation (or altitude); Asp is aspect, and
Slo is the slope. The functional form for Eq. 10 is repre-
sented in Appendix S1: Eq. S1. Additionally, I use the
predicted effect (i.e., êbi) from Eq. 9 in Eq. 10, which
implies that the maximum height (a functional trait) is
affected by the parameter governing the rate of change
of the curve, which, in turn, is affected by climatic vari-
ables. These submodels are obtained from the random-
effects relationship with biogeoclimatic variables, as well
as from the physiological results of Thomas and Bazzaz
(1999). The parameter estimates for submodels 9 and 10
are shown in Appendix S1: Table S2.

Behavior analyses

Not only do the scenarios evaluated affect the height
growth of dominant trees, but also the growth rates over
time and as a function of tree size. Different height-
growth patterns can be expected depending on the type
of habitat where N. alpina grows (first row of Fig. 4).
These range from slower growth rates when N. alpina

TABLE 2. Fixed-effects estimated parameters and variance
components for the proposed nonlinear mixed-effects height
growth model (Eq. 4) of Nothofagus alpina dominant trees.

Parameter Value

Coefficient
α̂ 33.829
β̂ 0.026
γ̂ 0.635

Variance
σ̂a 4.789
σ̂b 0.0047977
σ̂ 0.93713
σ̂1 1.6050

Note: Notice that, in the proposed model, there are no ran-
dom effects added to the parameter γ, consequently, I do not
report the variances σ2c and σ23.
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growth in habitat types mixed with N. obliqua to high
growth rates when associated with N. dombeyi–E. cordi-
folia (species indicating favorable moisture conditions).
The proposed model is capable of capturing the ecologi-
cal behavior of tree growth and of helping to identify
suitable growing conditions. For instance, N. alpina
grows better at higher elevations and southern aspects

(second row of Fig. 4). Besides, the difference among
aspects is more pronounced at higher elevations. Finally,
both mean annual temperature and two precipitation-re-
lated variables (precipitation in the warmest quarter
Pptwq and precipitation seasonality Ppseas) affects for-
est productivity. The combined effect of decreasing
Pptwq and increasing Ppseas, tend to a significant
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FIG. 3. Scatterplots between the random effects for the proposed height growth model and some geoclimatic variables. Panels
show âi vs. (a) elevation and (b) aspect; and b̂i vs. (c) mean annual temperature and (d) precipitation in the warmest quarter of a
year. The dashed curve is a smooth line.
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reduction of height growth of dominant trees (third row
of Fig. 4), pointing out the relevance of climate change
on any assessment of forest productivity.

DISCUSSION

The proposed height-growth model for dominant trees
overcomes previous problems in site productivity model-
ing of Nothofagus forests. This model is based on the

largest available stem analysis data for N. alpina that was
distributed through the entire range of the forest type
where the species largely grows (Fig. 1). I deliberately
avoided inflating the sample size by interpolating heights
of stem analysis data for every year, as previously done
in other similar studies (e.g., Trincado et al. 2002).
Moreover, I reviewed the height growth series of each
tree within a plot to detect past suppression of sample
trees, as a way to assure that the trees were likely to be
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dominant throughout their entire lives. Both the tempo-
ral correlation and hierarchical structure of the data
(tree-level random effects nested with plot-level random
effects) have been taken into account when fitting the
growth model, making statistical inference appropriate.
Based on a new productivity model for temperate for-

ests dominated by N. alpina, I show the sensitivity of
dominant height growth to several to biogeoclimatic
variables. These were segregated into three categories:
vegetation classification, topographic features, and cli-
matic variables. First, the use of vegetation classification
for estimating forest ecosystem productivity was pro-
posed early (Holman 1929, Daubenmire 1961, Mon-
serud 1984) and similar approaches, either by using
natural regions (Wang and Huang 2000) or forest
ecosystem classification (Salas et al. 2008, Pokharel and
Froese 2009), have started to be used more often again.
Accordingly, I used the vegetation belts classification of
Luebert and Pliscoff (2006). The proposed model can
represent an important ecological feature of tree species:
how a species grow in mixed forests conditions. N. alpina
increases its productivity when growing in mixed-species
habitat types. Still, especially with N. dombeyi and E.
cordifolia, this is more likely due to that both species
mostly growth in favorable humid settings. Furthermore,
as N. alpina is more shade-tolerant than N. dombeyi, the
latter species would offer suitable shelter for enhancing
growth rates of the former. This last finding is also in
agreement with the additive basal area phenomenon
(Lusk 2002, Lusk and Ortega 2003, Aiba et al. 2007,
Donoso and Lusk 2007, Donoso and Soto 2016, Parada
et al. 2018), where mixed forests can develop more bio-
mass or basal area than pure stands. As far as I am
aware, this is the first study in including habitat types for
modeling productivity in temperate forests; thus, moving
forward toward a better ecological understanding of
habitats in forest productivity. Moreover, I have shown
that the habitat type alters forest productivity. This pat-
tern is also in agreement with recent global studies on
productivity–biodiversity relationships (Liang et al.
2016, Morin et al. 2018).
Second, because topography features directly affect

radiation and moisture, it has been recognized as influ-
encing tree growing conditions (Turner 1936, Myers and
van Deusen 1962, Hunter and Gibson 1984, Fontes
et al. 2003). Likewise, how to include topographic vari-
ables in forest productivity models has been studied
(Beers et al. 1966, Stage 1976, Stage and Salas 2007).
However, soil variables have been problematic to incor-
porate directly into forest productivity studies (Verbyla
and Fisher 1989, Monserud et al. 1990, Carmean 1996).
For N. obliqua in Chile, Thiers (2004) found, after assess-
ing several soil characteristics on productivity, that these
are most important only to represent microsite condi-
tions. Although I did not use soil variables directly, I
approximated their effects by incorporating habitat type
and elevation. The biogeoclimatic factors submodel âi
not only allows differences between different aspects but

also having differential effects on productivity depending
on elevation. This distinguishing feature is not achieved
easily with traditional linear models. Based on the pro-
posed model, I predict more substantial differences in
height growth of N. alpina dominant trees, i.e., forest
productivity, between alternating aspects (northern vs.
southern) at higher altitudes than at lower ones (second
row of Fig. 4). The importance of aspect and slope on
forest structure and composition had been reported in
the Mediterranean region of Chile (Armesto and
Martı́nez 1978); so the described patterns of productivity
are in agreement with these authors. The âi submodel
must be considered in its entirety, regardless of whether,
in a statistical sense, specific parameters may not appear
nonsignificant when using traditional hypothesis testing
(Stage and Salas 2007, Battles et al. 2009).
Elevation affects forest productivity in different ways.

Among the topographic factors influencing tree growth
and forest productivity, altitude had been central in for-
est ecology (Coomes and Allen 2007). Regarding an alti-
tudinal gradient, atmospheric pressure, air and soil
temperature, humidity, exposure to wind, supply of
nutrients, and radiation change (Coomes and Allen
2007, Körner 2007). However, disentangling the neat
effects of elevation is a complicated matter because of
the multiplicity of factors being simultaneously affected.
Körner (2007) offered several examples where the inter-
pretation of results obtained for altitudinal gradients in
ecology becomes difficult. For the same reason, I pro-
posed to model the impact of altitude on forest produc-
tivity in combination with other elements. Overall, based
on the differentiation of the submodel âi with respect to
elevation and assuming a flat terrain (i.e., slope = 0), I
estimate that the optimum elevation for N. alpina is
700 m above sea level. Finally, the proposed modeling
framework offers the alternative of representing global
and local topographic features into forest productivity.
Given such a high variation of landscape configurations
in south-central Chile (i.e., the Andes, the Coastal
Range, and the central valley), the model can accommo-
date both: the large-scale variation, represented by habi-
tat types, elevation, and climate-related variables; and
the small-scale variation, represented by the slope,
aspect, and elevation interaction.
Thirdly, climatic variables were usually thought of as

constant for a given forest site when estimating forest
productivity. However, I now consider that climate is no
longer constant on time. Among the first studies on
incorporating climate effects into their growth models is
the one by Jordan and Lockaby (1990). Later on, and
thanks to the available climate layers, recent studies have
been incorporating climate variables in their growth
models (Wang et al. 2004, Madrigal-González et al.
2016). Climate is recognized as an important feature to
be taken into account, and that forced to search for
alternatives to addressing climate effects into well-estab-
lished forest growth simulators (Crookston et al. 2010).
The proposed model is sensitive to variations in
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precipitations, represented by both the amount of rain
during the warmest quarter (Pptwq) and the seasonality
(Ppseas) or distribution within a year. Meanwhile,
Pptwq has a positive effect on forest productivity; Ppseas
evidences a detrimental impact. The region under study
is characterized by a strong latitudinal gradient in pre-
cipitation, being more humid to the south. The precipi-
tation-related variables used here represent indicators of
the water balance. For instance, Pptwq is approximately
the spring/summer precipitation, which is usually related
to plant growth.
Regarding the mean annual temperature, it exhibits

an optimal pattern after differentiating the submodel b̂i
with respect to temperature. I estimate the optimum
mean annual temperature for N. alpina in 9.98°C. Also,
an increase in temperature could be favorable for for-
ests, but only up to a limiting value. Beyond that
threshold, the effects of temperature on forest produc-
tivity are adverse. Assuming a course of future climate
conditions, where Ppseas and Temp increases by 10%
and 1°C, respectively, and Pptwq decreases by 10 mm, I
predict a reduction of 1.4 m in height growth of 100-yr-
old dominant trees. This reduction is 4% of height
growth under no climate change conditions. Although
it might look small, this reduction suggests an impor-
tant decrease in forest carbon sequestration because of
the high proportion of biomass being stored by domi-
nant trees (Luyssaert et al. 2008, Stephenson et al.
2014).
The proposed approach to quantify climate–produc-

tivity relationships has the potential to be used else-
where. This approach combines dendrochronological
data of dominant trees and freely available global cli-
mate data sets. These sort of required information would
be handy to obtain for researchers working in regions
with low availability of high-resolution soil-bioclimatic
data. Indeed, further research is needed to provide better
empirical climate data and physiological experiments to
accurately envision the impact of climate change in for-
est productivity successfully.

CONCLUDING REMARKS

In this analysis, I offer a new simple approach for
quantifying the productivity–climate relationship in
temperate forests. Because of the highly variable land-
scape forms of the region under study, forest productiv-
ity varies widely between neighboring locations along
with the distribution of the Nothofagus alpina forests.
The proposed productivity model can represent large-
and small-scale geographic variation, by taking into
account habitat types, elevation, and climate-related
variables; and the interaction among slope, aspect, and
elevation. Ecologists need to include the effects of
topography, habitat type, and climate features simulta-
neously into models of forest ecosystem dynamics, as
these factors shift the potential paths to be followed by
a forest stand.
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bosques templados de Chile y Argentina. Editorial Universi-
taria, Santiago, Chile.

Donoso, P., C. Donoso, and V. Sandoval. 1993. Proposición de
zonas de crecimiento de renovales de roble (Nothofagus obli-
qua) y raulı́ (Nothofagus alpina) en su rango de distribución
natural. Bosque 14:37–55.

Donoso, P. J., and C. H. Lusk. 2007. Differential effects of
emergent Nothofagus dombeyi on growth and basal area of
canopy species in an old-growth temperate rainforest. Journal
of Vegetation Science 18:675–684.

Donoso, P. J., and D. P. Soto. 2016. Does site quality affect the
additive basal area phenomenon? Results from Chilean old-
growth temperate rainforests. Canadian Journal of Forest
Research 46:1330–1336.

Echeverrı́a, C., and A. Lara. 2004. Growth patterns of sec-
ondary Nothofagus obliqua–N. alpina forests in southern
Chile. Forest Ecology and Management 195:29–43.

Ellison, A. M., and B. Dennis. 1996. Paths to statistical fluency
for ecologists. Frontiers in Ecology and the Environment
8:362–370.

Esse, C., P. J. Donoso, V. Gerding, C. O. Navarro, and F.
Encina-Montoya. 2014. Modelling dominant height and site
index in different edaphoclimatic zones of Nothofagus dom-
beyi secondary forest in the Andes of south-central Chile.
Southern Forests: a Journal of Forest Science 76:221–228.
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