
Contents lists available at ScienceDirect

Forest Ecology and Management

journal homepage: www.elsevier.com/locate/foreco

On studying the patterns of individual-based tree mortality in natural
forests: A modelling analysis
Christian Salas-Eljatiba,b,⁎, Aaron R. Weiskittelc
a Centro de Modelación y Monitoreo de Ecosistemas, Facultad de Ciencias, Escuela de Ingeniería Forestal, Universidad Mayor, Santiago, Chile
b Laboratorio de Biometría, Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco, Chile
c Center for Research on Sustainable Forests, University of Maine, Orono, ME 04469-5755, USA

A R T I C L E I N F O

Keywords:
Competition
Survival
Forest dynamics
Logistic regression
Nothofagus
Temperate forest
Gompit
Logit
Multi-level, mixed-effects model

A B S T R A C T

Tree mortality is a critical ecological phenomenon shaping forest ecosystem dynamics, structure, and compo-
sition, while its effects are of global relevance due to its relationship with forest conditions and environmental
changes. There are several challenges associated with individual-based mortality data, particularly observations
with uneven measurement intervals. Here, we develop and examine several common individual-based mortality
modelling strategies that simultaneously account for unequal measurement lengths and the hierarchical struc-
ture of the data in long-term, permanent plot data from the mixed Nothofagus forests in south-central Chile.
These strategies depend on: (a) the functional model form (logit and Gompit), (b) the period length adjustment
method (annualized, covariate, and exposure), and (c) the data structure used (traditional or all multiple
combinations of the time series). Our findings indicated that the Gompit functional form outperformed the
commonly used logit link function. Furthermore, considering the period length as exposure in a generalized
linear mixed-effects model offered better goodness-of-fit than the other examined period length adjustments.
Using all the possible combinations of the dynamic data did not improve the prediction capabilities of the model
variants, but important differences were found in the statistical inferences of the fitted models. Our results
highlighted that understanding tree mortality strongly relies on using a suitable modelling strategy that is
capable of both capturing and assigning the sources of variation to the corresponding variables, which was best
accomplished using a multi-level, binary, and Gompit-exposure modelling framework in this analysis.

1. Introduction

Individual-based, tree-level mortality has been traditionally classi-
fied as either density-dependent or density-independent (Dennis and
Taper, 1994; Dennis et al., 2006), which have also been termed as
regular and irregular, respectively (Weiskittel et al., 2011). The former
is related to the general tree growing conditions within a specific forest,
while the latter is more related to stochastic natural disturbances or site
factors. Potentially, a new class of mortality should be included and
would better reflect the intra- and inter-annual environmental factors
that influence mortality (e.g., drought-driven mortality). Regardless,
understanding and predicting tree mortality is critical in both basic and
applied ecology (Franklin et al., 1987), as well as its long-term influ-
ence on forest composition, structure, and sustainability, which be-
comes even more relevant at the global scale given changing environ-
mental conditions.

Mortality of individuals is highly uncertain and difficult to model.

Among the forest dynamics phenomenon typically modelled, tree-level
mortality predictions are the most complicated and least accurate,
while generally having the largest effects on long-term simulation un-
certanity (Wilson et al., 2019). In particular, environmental change
plays an increasingly important role in intensifying the complexity and
uncertainty on tree mortality patterns (Herr et al., 2016). Furthermore,
as pointed out by Dennis et al. (1985), life is stochastic and uncertain.
Consequently, there will always be high level unexplained variation in
individual-based mortality models, but the use of contrasting ap-
proaches to modelling mortality may create additional, unnecessary,
and poorly quantified sources of variation.

By far, binomial logistic regression is the most widely used statis-
tical model for studying mortality (Weiskittel et al., 2011). The wide
use of logistic regression is likely due to the fact that it offers a sound
body of theory for hypothesis testing, and directly predicts the prob-
ability of occurrence, which can be used in a variety of individual-based
modelling applications. In fact, tree mortality is most likely one of the
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most suitable ecological phenomena for being modelled as a probabil-
istic process given its general stochastic and uncertain behavior over
time and space.

Given the use of mortality data on individual-based observations
from repeated measurements on permanent plots, three additional
major concerns arise, namely: (1) determining the exact timing of
death; (2) effectively standardizing and accounting for observations
with varying remeasurement period length intervals; and (3) properly
quantifying the influence and statistical significance of the potential
primary drivers of mortality. We further elaborate on each of these is-
sues below.

The length of the remeasurement interval must be accounted for
when modelling mortality as the probability of tree mortality effec-
tively increases with the length of the interval. Although mortality is a
phenomenon that relatively easy to conceptualize, several critical
misinterpretations of mortality rate measures are commonly found in
the ecological literature, which Sheil et al. (1995) highlighted a few
examples. Individual-based tree mortality data is often obtained from
different sources, where the measurement interval or period length
varies considerably (Weiskittel et al., 2011). Even within a given da-
taset, remeasurements on sample plots can vary due to fluctuations in
available funding (a frequent issue in developing countries) or simple
logistics. In the statistical literature, this phenomenon is known as ob-
servations differing in their time of exposure (Gelman and Hill, 2006).
Therefore, the vast majority of mortality studies must rely on data
collected with unequal measurement intervals (i.e., unequal period
lengths). Besides, given that tree mortality is a rare event, the length of
the observation period needed for detecting mortality must be long
enough (aside of fast-growing species) to minimize false negatives. In
addition, as noticed by Sheil et al. (1995), more complex model for-
mulations are required to allow comparison over varying time periods
because these measures require core knowledge or key assumptions on
how individual-based probabilities of death change through time. Re-
gardless, effective methods for addressing data from varying period
lengths in modelling mortality is an open topic of research, especially
within a climate change framework and more comprehensive metho-
dological comparison studies need to be conducted.

Identifying the fundamental core drivers of mortality has been a
long endeavor in ecological research. Although some causes of tree
mortality are evident (e.g., insect outbreaks, wildfires, and hurricanes),
the patterns and causes of tree death are complex and often interactive
(Franklin et al., 1987; Nyland, 1996). Several studies have been con-
ducted on identifying the most important variables influencing tree
mortality, which likely depend heavily on the actual methods being
used to assess mortality. Poorter et al. (2008) and Weiskittel et al.
(2011) provided a review on some common predictor variables of in-
dividual-based tree-level mortality. Here, we offer a classification of
these predictors depending on the main drivers being represented
(Table 1).

However, disentangling the density-dependent and environmental
effects on tree mortality is not as straightforward or obvious as one
might think. This is because tree mortality has been primarily modeled
based on simple, theoretical assumptions that lack a physiological and/
or empirical basis (Lutz and Halpern, 2006; Bircher et al., 2015). Al-
though tree mortality can be predicted using tree growth data
(Hartmann et al., 2007; Hülsmann et al., 2018), It is a remarkable
challenge to find reliable approaches for modelling the growth-mor-
tality relationship due to variation in the available data sources, mod-
elling approach used, and contrasting sample sizes across species as
well as length of the observation (Wunder et al., 2008). In the last
decade, several studies have attempted to determine the most im-
portant variables, i.e. drivers, of tree mortality. Among them, we
highlight a few key illustrative examples (Hartmann et al., 2007; Das
et al., 2011; Cailleret et al., 2014; Anderegg et al., 2015; Cailleret et al.,
2016; Cailleret et al., 2017; Hülsmann et al., 2018), but all differ in
their key methodological assumptions.

In this paper, we examine and evaluate different alternatives for
individual-based modelling of tree-level mortality from data having
highly unequal period length of measurements, while simultaneously
accounting for the hierarchical nature and contrasting structures of the
available data. Therefore, we aimed at: (1) developing a new statistical
strategy for effectively modelling tree mortality and its relationship
with an array of density-dependent and environmental factors; (2)
evaluating various approaches for accounting of unequalness of period
length remeasurements and the implicit hierarchies in the data; and (3)
exploring contrasting data structures to leverage the available data and
better identify key drivers.

2. Materials and methods

2.1. Data

We use individual-based data measured within permanent sample
plots with at least two measurement occasions. The permanent sample
plots were established between °37 and °41 S. in south-central Chile
where the species Nothofagus obliqua, N. alpina, and N. dombeyi conform
the most abundant forest type (Donoso, 1995). These three species are
the most important for commercial and cultural purposes, usually
growing on the most productive sites in the Central Depression and
foothills of the Andes (Salas et al., 2016). Furthermore, these forests are
part of the temperate rainforests of Chile, which represents the second
largest remaining area of this type in the world (Donoso, 1995; Veblen
et al., 1996).

At each measurement of the permanent sample plots, conventional
tree-level variables (e.g., tree diameter and species) were measured as
well as the status (live or dead) of each tree. From these measurements,
we computed several stand variables at the plot-level (e.g., density N,
basal area G, and the diameter of the mean basal area tree dg ). The
sample plots areas ranged from 500 to 10,000 m2, but most of them are
of 1,000 m2. We computed the relative tree population density (RD), as
a variable representing site occupancy, following the models provided
by Salas-Eljatib and Weiskittel (2018). The site productivity of each plot
was estimated from the model of Salas (2011), which estimates domi-
nant-trees height growth at age of 50 years depending on variables
representing climate, topographic, and habitat type features.

For each tree, we computed basal area in larger trees (BAL) as a
proxy for tree competition status, and its representation as a percentile
too (Wykoff et al., 1982). We deliberately avoided the use of a diameter
increment variable, because low growth rates do not necessarily result
in high mortality rates (Martínez-Pastur et al., 2007; Cailleret et al.,
2014; Bircher et al., 2015). We again want to indicate that our study is
not aiming at providing the best model for predicting mortality in this
particular analysis, but primarily want to assess the influence of various
modelling strategies for studying this complex ecological phenomena.
Regardless, we believe that the use of a variable representing compe-
tition helps to represent the growth effect on mortality without in-
cluding an additional source of potential measurement error (Peet and
Christensen, 1987; Bottero et al., 2017; Gleason et al., 2017; Lorimer
et al., 2001).

The sample data provided a good approximation to individual-based
mortality of native species of south-central Chile, spanning a full range
of tree sizes and competition, as well as stand density and site pro-
ductivity (Table 2). We used remeasurements from 49 permanent
sample plots, which had been remeasured between two and four times,
gathering a total of 88 plot-level measurements. The period length
ranged between 2 and 20 years, with an median value of 7 years. On
average, alive trees have larger diameter than trees that died, while
trees that died were subject to higher levels of competition than living
trees. In addition, the distribution of the variable percentile of BAL
enhances the differences between living and dead trees.
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2.2. Modelling approaches

2.2.1. The functional form of a generalized linear model
As explained above, logistic regression is the most widely used

statistical model for studying tree- and stand-level mortality (Monserud,
1976; Hamilton, 1986; Temesgen and Mitchell, 2005; Hartmann et al.,
2007; Wunder et al., 2008; Groom et al., 2012; Cailleret et al., 2016;
Young et al., 2017; Hülsmann et al., 2018), as well as for mortality of
vascular epiphyte (Zuleta et al., 2016) and individual tree branches
(Hein and Weiskittel, 2010). A logistic regression model belongs to the
group of generalized linear models (“GLM”, Schabenberger and Pierce,
2002). A GLM consists of the following three components: (a) random
component or response distribution, a set of observations y y y, , , n1 2 ,
sample size n, that are independently distributed with mean =y µE( )i i;
(b) systematic component, which refers to the quantity X , called the
linear predictor; and (c) the link function, which is a transformation of

the mean response so that covariate effects are additive and range re-
strictions are ensured (Schabenberger and Pierce, 2002). For instance, if
the random component is Bernoulli, and the probability of the event of
interest ( y x) is modelled by the function

=
+

1
1 e

,y x X (1)

we have a logistic regression model, because the functional form re-
sembles a logistic function (see further details in Appendix A).

If some of the various components of the GLM were modified, an
alternative to logistic regression model could be developed. In this re-
gard, we can assume the same random component as above, but change
the link function. A particularly appealing alternative, as is going to be
shown later, for the link function is the Gompertz model (Gompertz,
1825). Then, the probability is modelled by

= 1 e .y x
( e )X

(2)

To the best of our knowledge, we believe the only study of tree mor-
tality that had previously used the Gompit functional form was con-
ducted by Fortin et al. (2008) in Canada. From above, we have defined
two functional forms that can be used as link expressions in a GLM
framework.

2.3. Period length adjustments

Although the period length must be considered in mortality studies,
consensus on the best approach to address data with varying period
length when modelling mortality remains to be determined. In general,
there are four alternatives that can be used: (a) utilize only fixed period
lengths observations (e.g., Monserud and Sterba, 1999; Groom et al.,
2012); (b) estimate an annualized mortality rate before fitting a model
(e.g., Flewelling and Monserud, 2002); (c) include the period length as

Table 1
Classification of predictor variables in individual-based tree-level mortality studies.

Group Variables References

Tree diameter (d), Monserud (1976), Hamilton (1986);
Size height (h), Monserud and Sterba (1999), Eid and Tuhus (2001);

basal area (g) Groom et al. (2012), Hülsmann et al. (2018).

Diameter increment (paid), Monserud (1976), Monserud and Sterba (1999);
Growth crown ratio (cr) Pretzsch et al. (2002), Hartmann et al. (2007);

stability (h d/ ) Wunder et al. (2008), Cailleret et al. (2016), Cailleret et al. (2017).

Competition
Basal area in larger trees (BAL), Monserud (1976), Das et al. (2011);

Asymmetric spatial configuration Gonzalez-Akre et al. (2016), Hülsmann et al. (2018).

Stem density (N), Temesgen and Mitchell (2005), Young et al. (2017).
Symmetric basal area

Species diversity, Bravo et al. (2001), Yang et al. (2003).
Composition proportion of basal area Crecente-Campo et al. (2009), Yang and Huang (2013)

in hardwoods or pioneer species

Site index, Bravo et al. (2001);
Productivity elevation Yao et al. (2001), Pretzsch et al. (2002);

dominant height Groom et al. (2012)

Long-term climate, Suarez et al. (2004), Bigler et al. (2006);
Environment drought Anderegg et al. (2015), Young et al. (2017);

climate sensitivity van Mantgem et al., 2009

Wood density, Baltzer et al. (2008), Poorter et al. (2008);
Traits specific leaf area, Wright et al. (2010), O’Brien et al. (2017);

leaf water potential

Table 2
Summary of individual-level and plot-level attributes. The variables d and
p BAL. are tree diameter at breast-height and percentile of basal area in larger
trees, respectively. Meanwhile G RD, , and SI are stand basal area, relative
density, and site index, respectively.

Statistics Tree-level ( =n 13, 482) Plot-level ( =n 88)
Alive Dead

d p BAL. d p BAL. G RD SI
(cm) (%) (cm) (%) (m2 ha−1) (%) (m)

Minimum 5.00 0.10 5.00 0.20 4.10 8.80 21.60
Maximum 155.90 100.00 100.30 100.00 126.60 101.60 71.00
Mean 18.30 46.00 11.70 68.60 49.40 59.90 44.20
Median 15.10 43.20 9.90 72.50 47.20 59.90 44.40
Std.Dev. 12.90 28.60 7.70 22.70 18.80 16.90 12.70
CV (%) 70.50 62.30 65.70 33.10 38.10 28.30 28.70
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a covariate in the model (e.g., Mugasha et al., 2017); and (d) in-
corporate t as an exposure directly into the statistical model to be
fitted. Alternative (a) would greatly reduce the amount of observations
available for fitting a model, which is even more critical for mortality
data that must be obtained from long-term sample plots and it still
remains a relatively rare event. Furthermore, given the current spar-
seness of available data on this ecological phenomenon, particularly in
developing countries, we do not consider it as a viable method. In ad-
dition, option (c) does not accommodate the period length effectively as
it limits flexibility by assuming a linear or curvilinear relationship. On
the other hand, alternatives (b) and (d) appear to be more appropriate,
but contrasting approaches have used to achieved it. Therefore, we
refer to the three selected alternatives henceforth as “annualized”,
“covariate”, and “exposure”, which we explain further below.

(i) Annualized. Here an annual mortality model is fitted iteratively,
therefore, there is no need for incorporating t into the mortality
expression. The approach of Flewelling and Monserud (2002) re-
lies on annually interpolated predictor values between to and t1.
Within a specific time interval step, from each annualized value of
X, the linear predictor and the annual probability of mortality
(using either of the functional forms, Eq. (1) or (2)) are computed.
The annual probabilities of survival (Ps) are obtained by sub-
tracting them from 1, and the probability of survival at the end of
the period (Pst1) by

= × × × ×+ + +Ps Ps Ps Ps Pst t t t t( ) ( 1) ( 2) ( ).t1 0 0 0 0 (3)

As Monserud (1976) highlighted, mortality is not a Markov pro-
cess, therefore, survival is the process to be handled as such (Eq.
(3)). Later, the probability of mortality at the end of the period
(Pmt1) is obtained by

=Pm Ps1 ,t t1 1 (4)

and accordingly for each observation. Finally, based on theses
probabilities, and using a functional form such as logit or Gompit,
a model can be fitted using an iterative fitting approach. Therefore,
we assess both the logit–annualized and Gompit–annualized ap-
proaches.

(ii) Covariate. In this approach, we directly include an additional term
for the period length t . Therefore, we assess both the logit–cov-
ariate and Gompit–covariate approaches.

(iii) Exposure. For a dynamic phenomenon, such as mortality and other
like processes in ecology (e.g., germination), it is important to
consider the period length of exposition to certain conditions.
Shaffer (2004) proposed a logistic-exposure model for representing
the nest success of animals having different period of exposure to
wild conditions. He proposed the following link function

= =Xln
( )

1 ( )
,y x

t

y x
t

1/

1/ (5)

which is similar to the logit model (Eq. (A.7)), but including the
effect of t . Shaffer (2004) refer to (5) and the prediction function
(A.4) as the logistic–exposure model, which we shall used here as
well. Yang and Huang (2013) provided additional details on this
expression too.
we can extend the Gompit regression model to accommodate for
unequal period lengths, as full explained in Appendix B, up to
obtain

= + tXln[ ln(1 )] ln( ).y x (6)

From (6), we can see that to the previously defined linear predictor
X , we just have to add tln( ). Accordingly, we now have the

following GLM,

+ tX ln( ) (7)

ln[ ln(1 )]y x (8)

= tX1 exp[ exp( ) ]y x (9)

where (7)–(9) are the linear predictor, the link function, and the
inverse function, respectively. Eqs. (7)–(9) define a Gompit re-
gression mortality model for varying period lengths, and we will
refer to it as the Gompit–exposure model. Notice that t does not
affect the parameters and acts as an offset, i.e., a variable without a
coefficient. Gelman and Hill (2006) explained an offset as
equivalent to including the variable as a predictor, but with its
coefficient fixed to the value 1.

2.4. Data structure

Given that mortality is a dynamic phenomenon, we have complex
time-series data with a specific structure. Contrasting data structures
can influence the amount of available data and the final derived model
behavior (Wang et al., 2007). There are several alternative data struc-
tures that can be used in time series modelling. We will focus here on
two of them, the first is the most traditional, which uses non-over-
lapping and non-descending pairs of observations (Fig. 1a). This data
structure greatly limits the amount of data available for modelling. The
second one is to use all possible combinations of observations pairs
(Fig. 1b). As noted by Wang et al. (2007), this might offer advantages as
it greatly increases the number of observations and effectively extends
the remeasurement length interval. In Wang et al. (2007), only the non-
overlapping and all possible combinations data structures were able to
produced unbiased predictions of dominant height growth. However, to
our knowledge, the effects of alternative data structures has yet to be
tested on a binary variable like mortality rather than purely continuous
variables as in Wang et al. (2007).

2.5. Statistical models

Base model. We start by defining a reference model for individual-
based mortality, that will be used as a baseline model for the linear
predictor of our analyses. It is important to highlight that constructing
the best mortality model is beyond the scope of the present research as
we focus here instead on assessing alternative approaches on statistical
inference and on general model behavior. Several predictor variables
have been used in previously developed mortality models, but they can
be segregated in variables representing the factors given in Table 1.
From the cited studies, we fit several model alternatives (i.e., a logistic
model having different predictor variables, and/or transformations of
them), and we choose the following functional form for the linear
predictor ( ) of a GLM after extensive analyses,

= ×f d d perc BAL G RD SI( , , . , , ),2 (10)

where: d is diameter at breast-height and perc BAL. is the percentile of
basal area in larger trees of a given tree; while G RD, , and SI are stand
basal area, relative density, and site index of the plot to which the given
tree belongs, respectively. Notice that the results were not qualitatively
affected by the choice of base model.

Fitting. Based on the previous sections, we have defined 12 alter-
native modelling strategies (Table 3), or model variants, depending on:
(1) the functional form to be used (logit vs. Gompit); (2) the period
length adjustments (iterative, covariate, and exposure); and (3) the data
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structure (non-overlapping forward-only combinations vs. all possible
combinations).

In the previous sections, we have defined different functional forms,
period length adjustments, and data structures. Fitting a model in a
GLM framework is straightforward, but statistical inference on coeffi-
cients of variables measured at higher hierarchical levels than the ob-
served phenomena will not be efficient because the variance component
will be affected by pseudoreplication. For overcoming this issue, we fit
each model as a multi-level, mixed-effects model (Wong and Mason,
1985; Guo and Zhao, 2000), by adding random-effects to the fixed-ef-
fects parameters of the model.

The annualized-based variants are effectively non-linear mixed-ef-
fects models. For instance, the logit–annualized model variant is

N

N

= +
=

=

Y X
X Z

( | )~ ( , ),
[1 exp( )] ,

~ (0, ),

y x t y

y x t

( ; 1)
2

( ; 1)
1

2
(11)

where: X is the linear predictor having the variables specified in (10);
Z and are the design matrix and vector for the random-effects, re-
spectively; meanwhile y

2 and 2 are the variances for the response
variable Y and the random-effects, respectively. Notice that the

probability of mortality here ( =y x t( ; 1)) is annualized as explained
above using the approach of Flewelling and Monserud (2002). Mean-
while, the Gompit–annualized model variant is

N

N

= +
=

=

Y X
X Z

( | )~ ( , ),
1 exp[ exp( )],

~ (0, ).

y x t y

y x t

( ; 1)
2

( ; 1)
2

(12)

All the terms had been already defined, and the main difference with
the previous model is the functional form for the probability of annual
mortality.

The covariate-based GLM variants were as follows. For instance, the
logit–covariate model variant is

N

= +
= +

Y X
V Z

V Z

( | )~Bernoulli( )
[1 exp( )]

~ (0, ),

y x t( ; )
1

2
(13)

where: y x t( ; ) is the probability of mortality in t years; V is a matrix
of predictor variables such as in (10) but also including t ; and the rest
of terms were already defined. Meanwhile, the Gompit-covariate model
variant is

N

= +
= +

Y X
V Z

V Z

( | )~Bernoulli( )
1 exp[ exp( )]

~ (0, ),

y x t( ; )

2
(14)

where all the terms had been already defined. Finally, the exposure-
based GLM variants were as follows. The logit-exposure model variant
is

N

= +
= +

Y X
X Z

X Z

( | )~Bernoulli( )
1 [1 exp( )]

[ ]
~ (0, );

y x t
t

t
( ; )

2
(15)

where all terms had been already defined. Notice that for fitting this
model we had to provide a custom link function as in Shaffer (2004).
Meanwhile, the Gompit-exposure model variant is

Fig. 1. Data structures in time series. The plots show measurements of the state variable Y at four different times (t t t, ,0 1 2, and t3). In the traditional data structure
approach (a), pairs of non-overlapping and non-descending observations are used, i.e., using the following periods t t t t,0 1 1 2, and t t2 3, which are joined by red
arrows. In the all combinations data structure approach (b), all overlapping observations are also used, i.e., considering as well the following periods t t t t,0 2 0 3,
and t t1 3, which are joined by blue arrows.

Table 3
Alternative modelling strategies evaluated in this analysis. They are a result of
combining the different levels of: (1) the underlying functional form for the
generalized linear mixed-effects model, (2) the period length adjustment
method, and (3) the data structure used in model fitting.

Data structure Functional form Period length ( t ) Model variant
adjustment (Eq. number)

Annualized (11)
Logit Covariate (13)

Traditional Exposure (15)
( =n 16, 998) Annualized (12)

Gompit Covariate (14)
Exposure (16)

Annualized (11)
Logit Covariate (13)

All combinations Exposure (15)
( =n 25, 717) Annualized (12)

Gompit Covariate (14)
Exposure (16)
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N

= +
= + +

Y X
t

t
X Z

X Z

( | )~Bernoulli( )
1 exp[ exp( ) ]

ln( )
~ (0, );

y x t( ; )

2
(16)

All the model variants were fitted by maximum likelihood using the
lme4 package (Bates et al., 2015) implemented in R (R Core Team,
2017). Random-effects were allocated depending on the data structure.
Most studies have added plot-level random intercepts into the fitted
models (Shaffer, 2004; Rose et al., 2006; Fortin et al., 2008; Groom
et al., 2012; Yang and Huang, 2013). Aside of the sample-plot hier-
archy, we also considered random effects due to the species and the
measurement period.

2.6. Model assessment

We assessed all of the defined model variants in the following three
aspects, namely: (a) statistical inference, (b) prediction capabilities, and
(c) biological behavior. For the first, we analyzed the significance and
signs of the estimated coefficients, as well as comparing the maximum
likelihood-based statistics Akaike’s information criterion (AIC) and the
Bayesian information criterion (BIC).

For prediction purposes, we first computed the optimal cutoff (i.e.,
threshold) for assessing whether the event (i.e., mortality) occurs fol-
lowing the recommendations of Hein and Weiskittel (2010). We used
the package InformationValue (Prabhakaran, 2016) of R for com-
puting the optimal threshold and then determined the area under the
receiver operation characteristic curve (AUC), as well as the mis-
classification error (MCE, Hein and Weiskittel, 2010). To this effec-
tively, we conducted 1, 000 bootstrapping samples of size 5, 000 ob-
servations, in order to compute the empirical 95% confidence intervals
of both AUC and MCE. Mixed-effects models can produce population-
averaged predictions, as well as, subject-specific predictions (Pinheiro
and Bates, 2000). We use the species-level random-effects only, because
in any forest sampling efforts, the species is a variable generally mea-
sured.

The biological behaviour of each model variant was analyzed by
evaluating the expected mortality trends across the various predictor
variables. To do this, the marginal predicted probabilities versus each
predictor variable were computed and plotted. That is, across all the
groups in our sample (which is generally representative of our popu-
lation of interest), plot the average change in probability of the out-
come across the range of some predictor of interest. We show here the
behavior versus tree diameter only to allow for easier interpretation.

Finally, we assess the prediction of annual probability of mortality

of each modelling strategy by comparing it against the observed re-
lative frequency of mortality at diameter classes (class size of 10 cm).
We computed the following statistics recommended for comparing re-
lative frequencies in modelling studies (Reynolds et al., 1988), such as
the root-mean-square deviation,

= =
m

RMSD
( )

,k

m

y x k y x k
1

, ,
2

(17)

the mean bias

= =
m

Bias
( )

,k

m

y x k y x k
1

, ,

(18)

and the combined error index

=
=

dCEI | |,
k

m

k y x k y x k
1

, ,
(19)

where: y x k, and y x k, are the predicted and observed probability of
mortality for the k-th diameter class, respectively; m is the number of
diameter classes; and dk is the diameter for the k-th diameter class. The
lower the value of RMSD and CEI, the better, while the closer to zero is
better for bias. As pointed out by Pogoda et al. (2019), implications of
an error of one tree will substantially differ depending on whether that
error arose in a small or large diameter class. A statistic which accounts
for this additional criterion is the combined error index (Eq. (19)) of
Reynolds et al. (1988). Finally, we compute a rank index for each
modelling strategy depending on the goodness-of-fit statistics (Table 4)
and these derived tree-level prediction statistics. Notice that we assign
the goodness-of-fit statistics within each data structure because of the
effect of sample size. The lower the value of this rank index, the better
the strategy.

3. Results

Two primary patterns were obtained when comparing the goodness-
of-fit statistics among modelling strategies. The Gompit functional form
generally outperformed the logit for both data structures (Table 4). The
annualized period length adjustment offered the best fit only for the
traditional data structure, but the exposure and the covariate based on
the Gompit model had a better fit (Table 4). Regarding the predictive
abilities of the mixed-effects models, the Gompit-exposure strategy had
the largest AUC and lowest MCE, regardless of the data structure being
considered. Overall, there were no clear differences in the general
predictive capabilities between the logit and Gompit model forms when

Table 4
Goodness-of-fit and prediction capabilities by the various modelling strategies of mortality examined in this analysis. LogLik is the maximized log-likelihood, AIC is
the Akaike’s information criterion, BIC is the Bayesian information criterion, AUC is area under the receiver operation characteristic curve, MCE is misclassification
error. Est., low.CI, and upp.CI represents the estimated, lower confidence interval at 95% (or the 2.5% percentile of the empirical distribution of the statistics), and
upper confidence interval at 95% (or the 97.5% percentile of the empirical distribution of the statistics), respectively.

Data Model t LogLik AIC BIC AUC MCE
structure adjustment Est. low.CI upp.CI Est. low.CI upp.CI

Annualized −5588.970 11197.940 11275.349 0.643 0.631 0.649 0.357 0.360 0.377
Logit Covariate −7392.652 14802.586 14869.508 0.802 0.801 0.815 0.198 0.192 0.206

Traditional Exposure −6850.522 13719.044 13788.711 0.652 0.647 0.664 0.348 0.344 0.362
Annualized −5517.574 11055.149 11132.557 0.643 0.633 0.651 0.357 0.358 0.375

Gompit Covariate −6616.188 13252.377 13329.785 0.802 0.798 0.813 0.198 0.195 0.208
Exposure −6600.963 13219.927 13289.594 0.805 0.804 0.818 0.195 0.189 0.204

Annualized −10768.051 21556.101 21637.651 0.684 0.676 0.693 0.316 0.316 0.333
Logit Covariate −11401.862 22821.308 22893.024 0.798 0.783 0.799 0.202 0.209 0.224

All combinations Exposure −12804.314 25626.628 25700.022 0.625 0.626 0.645 0.375 0.365 0.385
Annualized −10707.494 21434.988 21516.537 0.683 0.679 0.696 0.317 0.313 0.329

Gompit Covariate −10596.099 21212.198 21293.747 0.798 0.801 0.815 0.202 0.192 0.207
Exposure −10589.159 21196.318 21269.712 0.799 0.791 0.806 0.201 0.202 0.218
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the same period length adjustment and data structure combinations
were considered (Table 4). Based on the boostrapped-determined con-
fidence intervals of both AUC and MCE, it was observed that Gompi-
t–exposure, Gompit-covariate, and logit–covariate were generally su-
perior, but were not statistical different than the other approaches at

= 0.05.
Statistical inference of models was strongly influenced by the ex-

amined modelling strategies. As expected, the standard errors of coef-
ficient estimates were much lower for the all combinations data struc-
ture than the traditional one (Table 5). The annualized period length
adjustment offered quite different parameter estimates than the ex-
posure method for both functional forms and data structures (Table 5).
Overall, the model variants based on the exposure period length ad-
justment were more robust in the parameter estimates between the
traditional and the all combinations data structure, particularly for the
Gompit functional form.

Simply adding t to the models altered the variance components of
the remaining predictor variables for both data structures and func-
tional forms. Therefore, caution must be taken for mortality models that
include period length as a covariate because it can result in misleading
statistical inference and the determined relationships are highly de-
pendent on the actual measurement interval, which are often relatively
arbitrary.

Model functional form (logit or Gompit) influenced both the mag-
nitude and shape of the marginal predicted probabilities of annual
mortality from the fitted models (Fig. 2). For instance, the annualized
period length adjustment produced the expected U-shaped of prob-
ability of mortality (Monserud and Sterba, 1999; Foster et al., 2014),
but tended to reach rather unrealistic levels of mortality too rapidly.
However, the Gompit model form produced more realistic levels of
mortality when using all the combinations data. Furthermore, the logit
model always produced higher mortality rates than the Gompit model,
especially when the exposure alternative was used. Consequently, the
predicted mortality patterns will depend heavily on the selected mod-
elling strategy and is an important source of consideration when de-
termining the final selected model. Indeed, the period length adjust-
ment produced different marginal probabilities of mortality. The
annualized alternative always resulted in a more pronounced U-shaped
mortality curve, but the predictions do not appear to be rather reliable
in practice (Fig. C.1). This trend is even more drastic for the logit
model. The covariate and exposure adjustments produced distinct
shapes of mortality rates for the logit model, but maintained almost the
same trend when the Gompit model form was used. In general, the data

structure used did not drastically influence the marginal probabilities of
mortality as much as the other factors examined in this study (i.e., the
functional form and the period length adjustments). Regardless of the
data structure, the annualized method produced relatively unrealistic
mortality predictions (Fig. C.2). In particular, the all combinations data
structure predicted mortality to be higher than when using the tradi-
tional data structure, but smaller differences were observed for the
Gompit model, indicating that it behaved more independently of the
data structure.

The predictive ability of the models by tree size class also high-
lighted important differences among the examined modelling strate-
gies. Regardless of the statistics being used here, the Gompit model
form always was among the top three rankings (Table 6). The all
combinations data structure did not offer better prediction capabilities
than the traditional data structure, therefore, the larger the sample size
of this method implies also creating more variability in the predictions
too. The precision of the model variants, measured by the RMSD, was
lower for the annualized alternatives, especially when the logit model
form was used. A similar trend was observed when analyzing the bias,
but the Gompit annualized had the lowest bias in the traditional data
structure. The combined error index (Eq. (19)), which gives extra
weights to larger trees, indicated that Gompit–covariate variant was the
best on this metric, although closely followed by Gompit–exposure.
Overall, we ranked the different variants according the goodness-of-fit
and prediction capabilities performance statistics and the best ones
were, in order, Gompit–exposure and Gompit–covariate using the tra-
ditional data structure, and Gompit-exposure using the all combinations
data structure.

4. Discussion

Mortality is a highly dynamic phenomena that varies both tempo-
rally and spatially. Individual tree mortality occurs when a tree goes
from living to dead, but determining the exact time and cause of tree
death is difficult to do at scale, which complicates understanding and
interpretation of key factors influencing it. In order to effectively cap-
ture mortality, longitudinal studies often using dendrochronological
records are common, which can be highly time-consuming to re-
construct, rely on numerous assumptions, and is often limited in scale.
If a more refined and robust understanding at the forest-level is re-
quired, the repeated remeasurement of tagged individuals located on
permanent sample plots over time and space is needed.

However, most of our knowledge on forest dynamics (where

Table 5
Parameter estimates, standard errors, and P-values for the different individual-based mortality modelling strategies examined in this analysis.

Model t Statistics Simple increment data Multiple increment data
adjustment

0 1 2 3 4 5 6 0 1 2 3 4 5 6

Est. 24.308 −1.114 0.010 −0.121 −0.001 −0.033 0.876 −0.403 0.003 −0.022 0.001 0.036
Annualized Std.Err. 1.956 0.029 0.000 0.004 0.000 0.035 1.303 0.014 0.000 0.002 0.000 0.023

P-value 0.000 0.000 0.000 0.000 0.000 0.355 0.501 0.000 0.000 0.000 0.000 0.119
Est. −5.403 −0.030 0.000 0.038 0.000 −0.000 0.141 −4.815 −0.041 0.000 0.034 0.000 0.006 0.058

Logit Covariate Std.Err. 0.582 0.013 0.000 0.002 0.000 0.008 0.022 0.606 0.011 0.000 0.002 0.000 0.009 0.004
P-value 0.000 0.019 0.009 0.000 0.002 0.951 0.000 0.000 0.000 0.000 0.000 0.001 0.530 0.000
Est. −1.095 −0.002 0.000 0.024 0.000 0.005 1.313 −0.020 0.000 0.017 −0.000 −0.011

Exposure Std.Err. 0.612 0.005 0.000 0.001 0.000 0.011 0.695 0.003 0.000 0.000 0.000 0.013
P-value 0.073 0.739 0.012 0.000 0.413 0.609 0.059 0.000 0.000 0.000 0.000 0.370

Est. 6.842 −0.309 0.002 −0.033 −0.000 −0.008 −0.504 −0.124 0.001 −0.006 0.001 0.015
Annualized Std.Err. 0.673 0.009 0.000 0.001 0.000 0.012 0.544 0.005 0.000 0.001 0.000 0.010

$P$-value 0.000 0.000 0.000 0.000 0.000 0.488 0.355 0.000 0.000 0.000 0.000 0.128
Est. −4.652 −0.035 0.000 0.029 0.000 0.000 0.109 −3.800 −0.048 0.000 0.026 0.000 0.001 0.049

Gompit Covariate Std.Err. 0.537 0.013 0.000 0.002 0.000 0.007 0.018 0.796 0.009 0.000 0.002 0.000 0.011 0.003
$P$-value 0.000 0.006 0.010 0.000 0.002 0.985 0.000 0.000 0.000 0.000 0.000 0.086 0.946 0.000
Est. −5.652 −0.036 0.000 0.029 0.000 0.002 −5.799 −0.043 0.000 0.027 0.000 0.004

Exposure Std.Err. 0.612 0.005 0.000 0.001 0.000 0.011 0.695 0.003 0.000 0.000 0.000 0.013
$P$-value 0.073 0.739 0.012 0.000 0.413 0.609 0.059 0.000 0.000 0.000 0.000 0.370
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mortality is crucial) is based on the chronosequence assumption (i.e.,
space substituted for time). For instance, the forest dynamics studies
summarized by Veblen et al. (1996), rely heavily on the chronose-
quence assumption as static data on forest structure and composition
was combined with dendrochronologically derived data on individual
tree age and radial growth. Nevertheless, this critical assumption is now
highly questioned in several ecological disciplines (e.g., Johnson and

Miyanishi, 2008; Damgaard, 2019). Besides, Norden et al. (2015)
highlighted that successional trajectories vary widely, even among
nearby stands with similar environmental conditions and disturbance
histories. In fact, Norden et al. (2015) called into question the premise
that successional processes are consistent over space and time. This
finding suggests the need to develop more effective methodologies that
can utilize and leverage repeated individual-based observations.

In addition, pseudoreplication is common in ecological research,
particularly studies on tree-level mortality. In most individual-based
mortality studies, trees are observed within sample plots, being located
within stands or forests, and so on. This hierarchical structure of the
data implies in practice that we have to use a unique value of stem
density and stand basal area within a sample plot but for different trees
(the same applied to other variables). In statistics, this sort of structure
is known as clustering data though hierarchical random processes
(Schabenberger and Pierce, 2002). If the hierarchical structure of the
data is not taken into account for statistical inference, the hypotheses
testing of the fitted model are not fully valid, because the variance
estimation is imprecise. It is common when assessing the effects of
forest structure and composition as well as environmental factors on
tree mortality to observe the pseudoreplication issue (e.g., Hartmann
et al., 2007; Young et al., 2017; Hülsmann et al., 2018), as well as in
vascular epiphyte mortality (e.g., Zuleta et al., 2016). A more suitable
statistical approach for overcoming the pseudoreplication issue is to fit
models in a hierarchical mixed-effects framework for directly ac-
counting for the structure of the data (Pinheiro and Bates, 2000). The
vast majority of applications of mixed-effects models in forest ecology
has been related to continuous variables, such as: height-diameter al-
lometry (Temesgen and von Gadow, 2004); stem shape (Leites and

Fig. 2. Average marginal predicted probability of annual individual tree-level mortality by functional form used for the link function of the generalized linear mixed-
effects model.

Table 6
Evaluation statistics for predicted annual tree-level mortality rates using dia-
meter size class as a proxy for tree size. RMSD is the root-mean-square deviation
(Eq. (17)), bias is computed as in Eq. (18), and CEI is the combined error index
(Eq. (19)). The rank index is the mean ranking based on model goodness-of-fit
(Table 6 and the prediction statistics shown in the current table, with the lower
the value the better.

Data Model t RMSD Bias CEI Rank
structure adjustment index

Annualized 0.5758 0.3743 506.4973 12
Logit Covariate 0.0632 0.0509 49.6720 5

Traditional Exposure 0.2724 0.2061 228.8960 9
Annualized 0.2437 0.0973 118.0520 8

Gompit Covariate 0.0512 0.0430 37.9547 2
Exposure 0.0543 0.0451 38.3852 1
Annualized 0.4257 0.2766 357.1129 10

Logit Covariate 0.0941 0.0677 76.0140 6
All combinations Exposure 0.2612 0.1927 214.5742 11

Annualized 0.1302 0.0884 71.8614 7
Gompit Covariate 0.0666 0.0509 52.2050 4

Exposure 0.0728 0.0580 52.2760 3

C. Salas-Eljatib and A.R. Weiskittel Forest Ecology and Management 475 (2020) 118369

8



Robinson, 2004); and growth modelling (Salas et al., 2008). However,
relatively fewer studies have used mixed-effects models applied to
binary responses (Fortin et al., 2008; Groom et al., 2012; Yang and
Huang, 2013; Zhang et al., 2017). Finally, the methodology to effec-
tively disentangle the density-dependent and environmental effects on
tree mortality remains a poorly explored research topic, particularly in
highly productive, species rich forests in the Southern Hemisphere.
Therefore, our study provides some important insights into this issue.

As previously highlighted, evaluating long-term trends in in-
dividual-based tree mortality poses several important challenges.
Mortality is clearly a key ecological process, but the inherent challenges
for examining it have only been recognized in relatively few studies
(Monserud, 1976; Zens and Peart, 2003). First, mortality is generally
represented as a dichotomous variable in mathematical models, which
relies on a relatively small subset of suitable statistical approaches
capable of handling data of this nature. In addition, mortality is a very
rare event that is rather difficult to sample for effectively, particularly
for trees because of their temporal scale when compared to other or-
ganisms (Pretzsch, 2009). This feature is even more pronounced if the
focus is on long-lived species similar to the ones in this study, which are
an important contrast to the fast growing species in even-aged planta-
tions (Li et al., 2015; Thapa and Burkhart, 2015). Consequently, the
available data for dynamically examining tree mortality are rather
limited and difficult to identify than many other tree ecological features
such as static variables at the individual tree- (e.g., height in Fajardo
et al., 2019) and stand-levels (e.g., tree stem density in Crowther et al.,
2015). The use of different types of time series data for tree modelling
had been rarely examined, and if so, only focused on continuous
random variables (Wang et al., 2007). To our knowledge, this is the first
study revealing the importance of leveraging all of the available data on
a binary variable. In addition, our results suggest the need to ad-
dtionally consider a relatively novel framework like the Gompit ex-
posure in future studies of individual-based mortality.

Overall, our analysis highlighted the rather strong influence of al-
ternative modelling strategies on individual-based mortality trends,
statistical inference, and model performance. In particular, we found
that adding the period length as a covariate alters the resulting para-
meter standard errors and p-values of the remaining predictor vari-
ables. It is relatively evident that the period length influencing the
probability of mortality, therefore, t must be considered when mod-
elling this phenomenon, but this is likely too obvious to draw any real
statistical inference on it. Consequently, we argue that the period length
must be taken into account when modelling mortality, but it is not done
effectively as a simple new and often linear predictor.

Tree mortality is one of the critical ecological phenomenons that
requires the most empirical evidence for improving our understanding
of the process (Cailleret et al., 2016; Hülsmann et al., 2018). The lack of
a strong connection between theory and empiricism is a common pro-
blem in many ecological disciplines (Rossberg et al., 2019). Much
previous work has been focused on finding the best predictors for
mortality analysis, but very few studies have questioned the widespread
use of the logit model form. In this vein, Cailleret et al. (2016),
Hülsmann et al. (2017), Hülsmann et al. (2018) compared several
predictor variables for predicting tree mortality using the logit model,
and various specific recommendations were determined based on these
analyses. Although we do not question those specific recommendations
here with our analysis, we do raise the important and rather critical
question whether the logit model form was actually the most appro-
priate for the analyses being conducted. We tried to advance our ability
to model individual-based mortality by considering a different func-
tional form, the Gompit. In our analysis, we consistently showed that
any mortality pattern to be described based on the models being de-
termined will depend heavily on the modelling strategy selected.
Therefore, we recommend the need to assess alternative modelling
strategies before making any further conclusions.

Although we developed a Gompit-exposure, multi-level model to

facilitate the rather difficult modelling of individual-based mortality
data, we would also suggest this approach for more simplistic analyses.
The primary advantages of our approach are that it is: the most
amenable way of taking into account the unequal period length of the
data, utilizes the full extent of the data available, and offer a rather
suitable way of statistical hypothesis testing. For instance, Hülsmann
et al. (2018) made a pattern of conclusions on individual-based mor-
tality models determined for several European species. However, they
did not directly take into account the hierarchical structure of the data
and as pointed out before, relied on a logit model form. Besides, several
other recent studies have examined the influence on climate and in-
dividual-based mortality pattern with differing conclusions yet nearly
all have relied on the logit model form.

In general, our analysis indicated the underlying data structure did
not greatly influence the marginal probabilities of mortality. However,
using all combinations of the data helped us for appropriately assessing
the statistical importance of potential drivers of mortality as well as for
detecting general patterns that would not have been possible when only
using simple forward steps of the available time series data.
Furthermore, regarding the importance of the three major factors under
study on the behavior of the fitted models, we found that the data
structure was the least important followed by the functional form and
the period length adjustment being the most important.

5. Conclusions

We offered a new approach for constructing individual-based mor-
tality models based on a multi-level, Gompit-exposure, and binary
mixed-effects model using all possible combinations of the available
increment data. This model provided us with a suitable, relatively
consistent, and rather robust statistical framework for both prediction
and hypotheses testing when using complex repeated observations with
varying period lengths. Future analyses would likely benefit from using
a similar modelling approach or at least evaluating alternative model-
ling strategies before selecting a final one. Overall, the study highlights
the importance of crucial underlying assumptions for modelling dy-
namic ecological events such as individual-based mortality and suggests
that there are a vital need and importance of evaluating these as-
sumptions before determining the nature and cause of specific re-
lationships.
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Appendix A. On the logistic and the gompit regression models

In a generalized linear model (GLM), the quantity that is being fitted as a linear model is

= = =µ g yX x( ) (E[ ]) ,i i i (A.1)

where, g (·) is the link function, which transform the mean µi onto a scale where the covariate effects are additive (Schabenberger and Pierce, 2002).
The mean of the outcome at any value of X is predicted as

=µ g ( ),i i
1 (A.2)

where g ( )i1 is the inverse of the link function. Based on the above, a logistic regression model is a GLM where the random component is:

=Y X x( )~Bernoulli( ),i i (A.3)

the systematic component is the linear predictor X , and the link function is

= =
+

g Y X xE 1
1 ei i Xi (A.4)

which mimics the logistic function

=
+

f z( ) 1
1 e

,z (A.5)

that is bounded by 0 and 1, for any possible value of the generic predictor variable z. Therefore (A.4) becomes a model for the probability of the
event =Y 1, as follows

=
+

1
1 e

.y x X (A.6)

From here, we solve y x as a function of X , having

= = = =YX Xln
1

logit 1 ,y x

y x (A.7)

where is the link function. The left-hand side of (A.7) is know as the logit transformation or simply the logit function. Once the parameters are
estimated ( ), the predicted probability is obtained by

=
+

=
+

= + X1
1 e

e
e 1

[1 exp( )] .y x X

X

X
1

(A.8)

Eq. (A.8), that resembles a logistic function (Ec. 1), is the inverse of the link function, therefore the model being fitted is know as "logistic regression".
Other functional form can be the Gompertz function (Gompertz, 1825) having the following formulation:

=f z( ) 1 e( e )z
(A.9)

being also bounded by 0 and 1, and therefore can be used as a potential link function of a binomial response in a GLM framework. The new link
function will be:

= =g Y X x(E[ ]) 1 e .i i
( e )X

(A.10)

Therefore (A.10) becomes a probability model for the random variable =Y 1 as follows:

= 1 ey x
( e )X

(A.11)

From here, we solve y x as a function of X , having

= = = =YX Xln[ ln(1 )] loglog[ 1] ,y x (A.12)

where (A.12) is the link function, known as the log–log transformation or log–log function. After estimation, the mean of the outcome at any value of
X is predicted as:

= = X1 e 1 exp[ exp( )]y x i

eX

(A.13)

Eq. (A.13), which resembles a Gompertz function (Ec. 2), is the inverse of the link function, therefore the model being fitted here is known as “Gompit
regression”.

Appendix B. On the gompit model for unequal period lengths

By starting from the following annual mortality model

= Xln[ ln(1 )]y x (B.1)

and re-arranged it to

=ln(1 ) e .y x
X (B.2)
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From (B.2), we know that

= = Ps1 e ,y x
e

1
X

(B.3)

= = Pm1 e ,y x
e

1
X

(B.4)

where Ps1 and Pm1 are the annual survival and mortality probability, respectively. As Flewelling and Monserud (2002) indicated, because of the
Markov property, the probability of survival for a period of t years is:

= =Ps Ps Ps Ps Ps( ) ,t t
t

1 1 1( ) 1 (B.5)

and because of =Pm Ps11 1, this relationship holds in t years, as:

=Pm Ps1 ( ) ,t
1 1 (B.6)

and we can replace (B.3) in (B.6), having

=Pm 1 e .t1
( e )X

(B.7)

Eq. (B.7) offers the ability to obtain the annual mortality probability from mortality being observed at a period length t . As we already defined our
inverse function, we can now search for the link function. From (B.7) we have

= 1 ey x
t( e )X

(B.8)

and the link function will be

=
=
=
= +
= +

e t
e t

t
tX

1 e
ln(1 ) ( )

ln(1 ) ( )
ln[ ln(1 )] ln(e ) ln( )
ln[ ln(1 )] ln( ).

y x
e t

y x

y x

y x

y x

X

X

X

( )X

(B.9)

Appendix C. Expected probabilities by period length adjustment method and data structure

See Figs. C.1 and C.2.

Fig. C.1. Average marginal predicted probability of annual individual tree-level mortality by period length adjustment method.
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