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1  | INTRODUC TION

Size–density relationships are essential for understanding and pre-
dicting core ecological processes. These relationships highlight how 
the number of individuals in a population decreases with the pro-
gression of time, or more specifically as the individuals increase their 

average size. Therefore, a size–density relationship is a fundamental 
result of highly dynamic competition and mortality processes. This 
concept is an essential aspect of many ecological disciplines includ-
ing forest (Jack & Long, 1996), wildlife (Jonsson, 2017), and fisheries 
ecology (Elliott, 1993). Self- thinning results from a frontier relation-
ship between stand density and tree size (Bi et al., 2000). That is, 
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Abstract
Self-thinning and site maximum carrying capacity are key concepts for under-
standing and predicting ecosystem dynamics as they represent the outcome of 
several fundamental ecological processes (e.g., mortality and growth). 
Relationships are often derived using alternative modeling strategies, depending 
on the statistical approach, model formulation, and underlying data with unclear 
implications of these various assumptions. In this analysis, the influence of con-
trasting modeling strategies for estimating the self-thinning relationship and max-
imum carrying capacity in long-term, permanent plot data (n = 130) from the 
mixed Nothofagus forests in southern Chile was assessed and compared. Seven 
contrasting modeling strategies were used including ordinary least squares, quan-
tile, and nonlinear regression that were formulated based on static (no remeasure-
ments) or dynamic data (with remeasurements). Statistically distinct differences 
among these seven approaches were identified with mean maximum carrying ca-
pacity ranging from 1,050 to 1,912 stems/ha depending on the approach. The 
population-level static approach based on quantile regression produced an esti-
mate closest to the overall mean with site-level carrying capacity depending on 
tree species diversity and climate. Synthesis and applications. Overall, the findings 
highlight strong variability within and between contrasting methods of determin-
ing self-thinning and site maximum carry capacity, which may influence ecological 
inferences.
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self- thinning occurs when the population density reaches the maxi-
mum possible for a given average individual size, and so any increase 
in average size causes a decline in stand density. The self- thinning 
phenomenon is one of the few fundamental rules throughout ecol-
ogy and has led to several important concepts such as the - 3/2 law 
for plants (Reineke, 1933; Yoda et al., 1963), - 4/3 power rule for ani-
mals (Begon et al., 1986), and maximum carrying capacity (Enquist et 
al., 1998). Although the - 3/2 power rule has received some criticism 
(Lonsdale, 1990; Weller, 1987), its use for ecological interpretation 
of population dynamics is widely utilized and accepted by ecologists.

The carrying capacity of a population can be expressed in the 
same way as the asymptote of a logistic equation in an ecological 
model (Gore & Paranjpe, 2001; Gotelli, 2001; Pielou, 1977), as the 
maximum density for a given average individual size. This value is 
generally termed the maximum stand density index (SDImax), and it 
is used for a range of purposes (Avery & Burkhart, 2002; van Laar & 
Akça, 2007). The maximum carrying capacity of a forest has been re-
cently shown to vary depending upon species composition (Binkley, 
1984; Puettmann et al., 1992; Stout & Nyland, 1986), species func-
tional traits (Ducey et al., 2017), and climate factors (Weiskittel et al., 
2009). In addition, its potential uses for multicohort and structurally 
complex forests has been assessed, and general findings suggest a 
similar usefulness as for more simpler forests (Ducey & Knapp, 2010; 
Sterba & Monserud, 1993). Construction of maximum size–density 
relationships provides a basis for quantifying the ecological concepts 
of self- thinning and carrying capacity. However, defining this frontier 
relationship is difficult and, consequently, it has been derived using 
a variety of different approaches that depend upon the statistical 
approach, model formulation being used, and the actual data source.

Several statistical models have been proposed for fitting self- 
thinning relationships. The most common approach is to fit a base 
model, for example, the logarithmic of Reineke (1933), using ordinary 
least squares (OLS) and then shift the intercept upwards by comput-
ing the upper level of the 95% confidence interval for that estimated 
parameter. Nevertheless, this approach does not fully account for 
the structure of the data, and more suitable statistical models for 
building self- thinning lines have been devised. Zhang et al., (2005) 
compared different alternatives for estimating the self- thinning 
boundary line including the following: OLS, corrected OLS, deter-
ministic frontier function (DFF), stochastic frontier function (SFF) 
or stochastic frontier regression (SFR), and quantile regression (QR). 
Their results favored SFR, although QR performed nearly as well. 
VanderSchaaf and Burkhart (2007) elaborated further on the bio-
logical implications of the maximum size—density relationships, and 
compared OLS, a first- difference model, and linear mixed- effects 
(LME) models for fitting this relationship. They found that the LME 
was a better alternative for estimating the slope of the Reineke’s 
model in specific situations without accounting for self- thinning pat-
terns of individual stands. Remeasured or dynamic data can be used 
to approximate an instantaneous growth rate. Vanclay and Sands 
(2009) applied this concept, for analyzing the self- thinning frontier. 
In contrast, Weiskittel et al., (2009) used static data and SFR for esti-
mating the self- thinning boundary line in different forest types in the 

Pacific Northwest, USA. They also found that site productivity and 
the proportion of basal area of the primary species being modeled 
were important predictor variables for the size–density relationship. 
Recently, Andrews et al., (2018) used QR with mixed- effects to de-
termine carrying capacity for several common species in the Acadian 
Region of North America and found the method to provide robust 
site- level estimates that were influenced by a variety of factors in-
cluding species functional traits and climate.

Similar to alternative statistical approaches, different data 
sources have been used for developing self- thinning relationships. 
The most common type of data for fitting size–density models is 
from static measurements that lack repeat observations. Static 
data have been primarily used as they are easy to collect and can 
be quickly assessed over a wide range of conditions, whereas their 
primary disadvantage for constructing a self- thinning relationship is 
that either a full range of conditions must be measured, particularly 
high- density sites, or an appropriate statistical model for estimating 
it be used. Dynamic data contain site- level attributes that have been 
remeasured through time. This source of data has been proposed 
by García (2009) for developing self- thinning lines, based upon dif-
ferential equations. Recently, Trouve et al., (2017) followed García’s 
(2009) approach in single- species forests in Australia and found 
that the dynamic approach performed similar to a static one, which 
was similar to the findings of Kweon and Comeau (2017). Smith and 
Hann (1984) also suggested the use of dynamic data for developing 
maximum size–density models, which was later modified by Hann 
et al., (2003) for using the first site- level measurement along with 
future observations to determine a site’s trajectory in self- thinning 
space. The third type of data proposed for self- thinning studies are 
individual tree- level observations. For example, Ducey and Knapp 
(2010) proposed this approach as a way for estimating the maximum 
size–density relationships in mixed species and structurally complex 
forests. The method was later generalized further by Ducey et al., 
(2017) for incorporating climate and species functional traits.

A variety of core questions remain on the various estimation 
strategies for modeling self- thinning relations and site- level maxi-
mum carrying capacity. The vast majority of research on this topic 
had been conducted for single- species stands, but relatively limited 
research has been taken for mixed- species forests, particularly spe-
cies rich and productive temperate rainforests. In addition, the de-
pendency of site- level carrying capacity on climate conditions and 
other environmental factors has rarely been taken into account. As 
indicated by Weiskittel et al., (2009), most studies have used sub-
jective or significantly limited statistical techniques for fitting the 
self- thinning line. Furthermore, most studies have used static data, 
but rather few have explored and compared the use of dynamic data 
for estimating maximum size–density models. Finally, most studies 
have ignored the hierarchical structure in both static and dynamic 
data, which may have biased findings and limit general inferences to 
population-  rather than site- level trends. Therefore, we aimed to: (a) 
develop alternative strategies for constructing the maximum size–
density relationship that explicitly account for hierarchical data; (b) 
compare implied estimates of site- level maximum carrying capacity; 
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and (c) relate observed carrying capacity to various site- level and 
environmental variables.

2  | METHODS

2.1 | Data

Our study area covers the secondary Nothofagus forests in the 
southcentral part of Chile (37°–41°S.) Specifically, we focus on the 
N. obliqua, N. alpina, and N. dombeyi forest type (Donoso, 1995), 
which covers around 600,000 ha. These forests are part of the 
temperate rainforests of Chile, which represents the second larg-
est remaining area of this type in the world (Donoso, 1995; Wilcox, 
1995) and are internationally recognized for their ecological im-
portance (Davis, Heywood et al., 1994; Olson & Dinerstein, 1998; 

Stattersfield, 1998). As highlighted by Salas et al., (2016), these 
three species are the most important for commercial and cultural 
purposes, which are usually located on the most productive sites in 
the Central Depression and foothills of the Andes.

We use data from permanent sample plots established through-
out southcentral Chile where the roble- raulí- coigue forest type 
grows (Figure 1). The plots areas ranged from 500 to 10,000 m2 and 
were based on conventional tree- level measurements of trees larger 
than 1.3 m in height with a diameter at breast- height (d) greater or 
equal to 5 cm. We computed stand variables at the plot- level (e.g., 
density N and diameter of the mean basal area tree dg). Plots remea-
sured at least once were considered as “dynamic data,” while others 
provided “static data.”

The dynamic plots are clearly shown as a time series, meanwhile 
the static plots are only shown as single dots. Figure 2 shows the 
relationship between density and quadratic mean diameter (i.e., a 

F IGURE  1 Permanent sample 
plots distribution (dots) in secondary 
Nothofagus forests (green) in south- central 
Chile. The plots with remeasurements 
on time are mark as “dynamic” or “static” 
otherwise
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plot-level averaged tree diameter), highlighting the progressive de-
crease in individuals in the population as they increase their size. 
The descriptive statistics for the primary site- level variables by type 
of data are summarized in Table 1. We have a total of 130 plots, and 
because some of them have been remeasured, the total number of 
observations is 178. Note that from the available plots, 26 of them 
have more than one measurement.

Besides variables representing forest features, we also ob-
tained bioclimatic variables for each plot location from WorldClim 
(http://www.worldclim.org) surfaces (Hijmans et al., 2005). These 
19 bioclimatic variables represent annual trends (e.g., mean annual 
temperature, annual precipitation), seasonality (e.g., annual range 
in temperature and precipitation), and extreme or limiting environ-
mental factors (e.g., temperature of the coldest and warmest month, 
and precipitation of the wet and dry quarters). Note that these 

bioclimatic variables were long- term averages (Hijmans et al., 2005). 
In addition, topographic features such as elevation, aspect, and slope 
were also evaluated.

2.2 | Modeling strategies

We evaluated different alternatives for constructing and interpret-
ing self- thinning relationships, which were a combination of data 
source, model form, and statistical method. The data sources are 
defined by the type of measurement (i.e., static or dynamic) and the 
level of information (i.e., site-  or individual- level). The different mod-
eling strategies are summarized in Table 2 and explained further in 
the following paragraphs.

1. Static, site-level data, and linear mixed-effects fit (S-P-LME): We 
used the Reineke’s formulation (Reineke, 1933), as the base model 
for representing the relationship between stem density—average 
tree size, as follows 

where: Nij and dgij the tree density and the quadratic mean di-
ameter for the j-th measurement at the i-th plot, respectively; 
while eij is a random error following a Gaussian distribution having 
an expected value of 0 and variance �2

eij
. VanderSchaaf and Burkhart 

(2007) proposed a method for estimating maximum size—density 
lines based on a mixed-effects model by adding random effects 
into both parameters of the Reineke’s model, as follows, 

where u0i and u1i are plot-specific random effects to be predicted 
and assumed to follow a Gaussian distribution having an expected 
value of 0 and variance �2

0
 and �2

1
, respectively. We fit this model 

(Equation 2) using the nlme package (Pinheiro & Bates, 2000) of R 
Core Team (2017). In order to estimate the self-thinning line, we 
computed the upper level of the 95% confidence interval for the es-
timated intercept-coefficient of the model, by adding the estimated 

(1)lnNij=�0+�1 ln dgij +eij,

(2)lnNij= (�0+u0i)+ (�1+u1i) ln dgij +eij,

F IGURE  2 Population density versus average individual size 
(dg is quadratic mean diameter) for permanent sample plots of 
Nothofagus forests. Dots joined by lines correspond to remeasured 
plots (i.e., dynamic), and single dots represents plots without 
remeasurements (i.e., static)
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TABLE  1 Descriptive statistics for the primary forest variables segregated by measurement type of plots: static (i.e., no remeasurements) 
and dynamic (i.e., at least one remeasurement)

Statistics

Type of measurement

Static (n = 104) Dynamic (n = 74)

N (trees/ha) dg (cm) G (m2/ha) PBA (%) N (trees/ha) dg (cm) G (m2/ha) PBA (%)

Minimum 330 13.7 16.4 48.0 670 11.5 26.2 39.7

Average 1,270 23.7 49.5 77.3 1,770 20.2 50.7 82.5

Median 1,160 21.8 47.5 82.5 1,530 20.1 50.3 86.6

Maximum 3,580 48.1 106.4 100.0 4,680 34.1 85.5 100.0

CV (%) 50 28.6 32.8 25.9 44 23.8 23.0 17.5

Note. The variables are population density (N; trees/ha), quadratic mean diameter (dg; cm), basal area (G; m2/ha), and percentage of basal area of 
Nothofagus species (PBA; %).

http://www.worldclim.org
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parameter to its respective standard error multiplied by 1.96 (i.e., the 
quantile from the t-distribution for �=0.05).
2. Static, site-level data, and quantile regression fit (S-P-LQMM): Both 
OLS and LME aim at estimating population-averaged parameters and 
therefore do not directly model the frontier relationship that are of 
interest in self-thinning estimation. A regression equation that mod-
els the median instead of the expected value, such as a conditional-
mean regression would be a more suitable alternative for a frontier 
relationship. Koenker and Bassett (1978) proposed a more general 
model, the quantile regression model (QR). The QR corresponding to 
a mean conditional model can be expressed as the pth conditional 
quantile given xi as: 

where Q(p)
[yij|xij] is the p-th quantile for yij being determined by the 

quantile-specific parameters � (p)
0

 and � (p)
1

, and the value of xi, where 
yij= lnNij and xij= ln dgij as in the Reineke’s model. We fit the quantile 
regression model (3) in a mixed-effects framework by adding random 
effects (plot-specific) to the intercept of the model, therefore fitting 
a linear quantile regression mixed-effects model (LQMM). We tested 
different quantile values as recommended by Ducey and Knapp 
(2010). We choose the quantile that gave us the lowest variance es-
timates for the estimated parameters. According to our analyses, the 
0.95 quantile was selected. This quantile mixed-effect model was 
fitted by assuming a log-likelihood expression based on an asym-
metric Laplace density function, as suggested by Geraci and Bottai 
(2007), and using the lqmm package (Geraci, 2014) implemented in 
R. Because the quantile regression model was fitted in a mixed-ef-
fect framework, we should not simply use the fixed-effect estimated 
quantile-intercept parameter as the corresponding parameter for 
constructing the self-thinning line. This would be misleading in the 
sense that it does not fully represent the quantile-parameter itself, 
but an average of it. Therefore, as in the above strategy, we com-
puted the upper level of the 95% confidence interval of the intercept 
parameter for the LQMM model.
3. Static, site-level data, and stochastic frontier regression fit (S-P-
SFMM): Stochastic frontier regression (SFR, Aigner et al., 1997) is an 
econometrics model that is often used to determine the technical 

efficiency of business firms but has been used in the past for self-
thinning analyses (Bi et al., 2000; Weiskittel et al., 2009; Zhang et al., 
2005). We express a SFR model as the following matrix model 

where: the vector Y contains all the lnNij; X is the design matrix 
having the observations of ln dgij; � is a vector of coefficients; the 
vector V is a random variable representing a portion of the model 
error, where Vij∼N(0,�2

V
); the vector U is a positive random variable 

representing the other portion of the model error following a half-
Gaussian with Uij∼

|||N(0,�2U)
|||. In this analysis, a true random effects 

SFR model of Greene (2005) was used to account for the data hier-
archy. The SFR model (4) in a mixed-effects framework (S-P-SFMM) 
was fit using PROC QLIM in SAS v9.4, by adding random effects to 
the model intercept (4).
4. Static, individual-level data, and linear mixed-effects fit (S-T-LME): 
Ducey and Knapp (2010) developed a stand density index based on 
tree-level variables, which was determined to be more suitable for 
mixed-species and structurally complex forests. Their approach in-
volves fitting the following system 

where EFiz is the expansion factor for the z-th tree within the i-th 
plot; dzij and SGzij are diameter and specific gravity, respectively for 
the j-th measurement of the z-th tree at the i-th plot. Ducey and 
Knapp (2010) did not provide an approach for estimating a self-thin-
ning line, but for computing the maximum carrying capacity, which 
can be obtained by 

where Nmaxi
 is the maximum density for the i-plot and SGi is the av-

erage-specific gravity for that plot. Model (5) was fitted as a quan-
tile regression model with mixed-effects using the 95th percentile.
5. Dynamic, site-level data, and density model with linear mixed-effects 
(D-P-LME): All the above-explained strategies used static data, which 

(3)
Q

(p)
[yij|xij]=�

(p)

0
+�

(p)

1
xij+Q

(p)
(�ij),

(4)Y=X�+
(
V−U

)
,

(5)

�0x0+�1x1+�=1,where

x0=
∑
j

EFiz(dzij)
1.6

x1=
∑
j

EFizSGzij

�
dijz

25

�1.6

,

(6)Nmaxi
=

100

�0+�1(SGi)
,

Modeling approach 
acronym

Data source

Statistical model Equation number
Type of 
measurement Level

S- P- LME Static Plot LME (2)

S- P- LQMM Plot QR (3)

S- P- SFMM Plot SF (4)

S- T- LME Tree Ducey (5–6)

D- P- LME Dynamic Plot Density (10)

D- P- NBME Plot Mortality (13)

D- P- NLME Plot 1st measu. (14)

TABLE  2 Modeling strategies 
evaluated in this analysis. They were a 
combination between the data source, model 
form, and the statistical model being used
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do not require plots that have been remeasured through time. An alter-
native is using dynamic data, which are plots with one or more remeas-
urements, for deriving self-thinning lines. Although there is imbalance 
between static and dynamic observations in this analysis, we do not 
believe this would greatly influence our general findings since we are 
interested in plot-level trends and highlighting the differences across 
methods. Therefore, for the following strategies, we used 26 sample 
plots with dynamic data of stand variables through time.

Traditionally, in ecology, the rate of change in density has been 
studied as a density- dependent phenomenon (Dennis & Taper, 1994; 
Gotelli, 2001), using the following general differential equation form: 

where f() is a function relating the rate of change to a vector of param-
eters � and N is population density. García (2009) proposed to relate 
the rate of density change in terms of forest height (H) instead of time, 
and proposed the use of the following differential equation form: 

where �0,… ,�2 are parameters. Zeide (2010) instead used an aver-
aged stand diameter known as the diameter of the mean basal area 
tree (dg) as: 

 A solution of equation (9) is given by Trouve et al., (2017) as the 
following density model: 

where N1i and N0i is tree density at the end and at the beginning of the 
period for the i- th plot, respectively; dg0i and dg0i is the stand quadratic 
mean diameter at the end and at the beginning of the period for the i- 
th plot, respectively. �0,�1, and �2 are parameters to be estimated and �i 
is a random error for the i- th observation from a Gaussian distribution 
with mean 0 and standard deviation �.

We fit several variants of model (10) by allowing random 
effects on each or all of the parameters of that model. As ex-
plained above, the plot was used as the random factor in order 
to take into account the hierarchical structure of the data. Given 
that our data have a hierarchical structure, the random effects 
capture variation from unmeasured variables at the plot- level 
and the individual- level in plots with repeated measures. We 
compared models based on the Bayesian information criterion 
(BIC; Schwarz, 1978).

For computing the self- thinning estimates from the dynamic 
density model, we follow Trouve et al., (2017) by using the following 
formulas: 

 

6. Dynamic, site-level data, and mortality model with negative binomial 
mixed-effects (D-P-NBME): An alternative approach is to model how 
density changes based on the difference in population densities on 
time. We fit a negative binomial generalized linear model (NBGLM) 
as given by Trouve et al., (2017) in their equation 8, but allowing ran-
dom effects into the intercept of the model 

where: ΔNi=N0i−N1i; Δdgi =dg1i −dg0i; where u0i are plot-specific 
random effects to be predicted and assumed to follow a Gaussian 
distribution having an expected value of 0 and variance �2

0
; and � is 

an overdispersion parameter that allows the variance to be scaled 
as the square of fitted Δ̂Ni values; and the other model terms have 
been explained above. Note that the last term in equation (13) 
does not have a coefficient, which was achieved by using the op-
tion offset implemented in R as suggested by Trouve et al., (2017). 
In this way, the model is forced to use the measured value of Δdgi 
as it is.

The corresponding self- thinning line is obtained as in the previous 
modeling strategy, by substituting their respective parameter esti-
mates in equations (11) and (12).

7. Dynamic, site-level first-measurement data and average individual 
size model with nonlinear mixed-effects (D-P-NLME): Hann et al., 
(2003) proposed a method for estimating the maximum size—
density trajectory. In general, this approach differs from the others 
explained above in the sense that it (a) predicts stand diameter 
instead of tree density (like in Yoda et al., 1963), and (b) uses 
the first available measurement for each plot to evaluate the 
trajectory over time. 

where Ni and dgi are the tree density and stand diameter for the i-th 
plot, while that N

1sti
 and dg

1sti
 are the same variables measured for 

the first time at the i-th plot. The self-thinning line is obtained by 
using the reversed-Reineke’s equation part of (14), and solving for N.

2.3 | Comparisons

We examined two important features of the assessed modeling 
strategies: (1) model behavior and (2) prediction of carrying capacity.

1. Model behavior. In order to assess how well the self-thinning 
lines depicted by each modeling strategy represent the frontier 
relationship of population density, we plotted them in both log 

(7)
dN

dt
= f(�,N),

(8)
dN

dH
=�0N

�1H�2 ,

(9)
dN

ddg
=�0N

�1dg
�2

(10)lnN1i= ln

(
N
1−�2
0i

+exp[�0] ⋅
1−�2

�1+1
⋅

[
d
�1+1
g0i

−d
�1+1
g1i

])
1

1−�2
+�i,

(11)
intercept=

�̂0

1− �̂2
+

ln
(
�̂2−1

)
− ln

(
�̂1+1

)

1− �̂2

(12)
slope=

1+β̂1

1−β̂2

(13)

ΔNi∼NB
(
Δ̂Ni,�

)

ln
(
Δ̂Ni

)
=
(
�0+u0i

)
+�1 ln (dg0i )+�2 ln (N0i)+ lnΔdgi ,

var
(
Δ̂Ni

)
=Δ̂Ni+

Δ̂N2
i

�
,

(14)

ln dgi =�0+�1 ln (Ni)−

⎡
⎢⎢⎣

(�0�2)
2

�0+�1 ln (N1sti
)− ln (dg

1sti
)

⎤
⎥⎥⎦
e
−�3

�
ln (N

1sti
)−ln (Ni)

�
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and untransformed space with the observed dispersion of our 
data.
2. Prediction of carrying capacity. As a proxy for the carrying 
capacity, we computed the maximum stand density index 
(SDImax), that is, the maximum number of trees at a given refer-
ence average individual size (in our case a diameter) that can 
exist in a self-thinning population (Husch, Miller, & Beers, 1972). 
As the self-thinning model provides the maximum density for a 
given average plot diameter (equation 3), the SDImax is pre-
dicted by 

where N̂maxi
 is the predicted maximum density at a base-average tree 

size dbase at the i-th plot. We predicted SDImax using 25.4 cm as dbase,  
for each of the modeling strategies. We compared the predicted val-
ues of SDImax among each of the strategies, by computing the multi-
ple comparison test of Scheffé (1953).

2.4 | Modeling carrying capacity

For the best modeling strategy, we further explored the relationship 
between the plot- level ŜDImax with various forest, topographic, and 
bioclimatic variables. We fit several models of the form 

where: SDImaxi is the predicted maximum stand density index at 
the i- plot; Xi is the predictor variables matrix (with a first column 
with ones) at the i- plot; f() is a linear or non- lineal function; � is a 
parameter vector (i.e., coefficients) of the model; ei is the random 
error term that follows a Gaussian distribution with zero mean and 
variance �2

e
.

We assessed different predictor variables for X in model (16), 
therefore having several candidate models. Some of these vari-
ables were based on the results of Weiskittel et al., (2009). We 
used the following response variables for representing forest 
features: proportion of the primary species (in our case, the ones 
belonging to the Nothofagus genus) in density, basal area, and vol-
ume; minimum, maximum, median, standard deviation, coefficient 
of variation, and skewness of the diameter distribution; species 
richness; Shannon index; and index of species relative importance. 
The following topographic features were also used as predictor 
variables: elevation, aspect, and slope as in Stage and Salas (2007). 
Finally, we also tested to use the bioclimatic variables as predictor 
variables in model (16).

The final carrying capacity model was selected after com-
paring the goodness- of- fit of the different model formulations, 
prediction capabilities, and the biological behavior of the result-
ing model. Given that we had 19 bioclimatic variables, we first 
found the best single predictors of carrying capacity. We then 
tested each of the selected predictors with the other potential 
predictors.

3  | RESULTS

Based upon all of the modeling strategies explained above, we pre-
dicted the self- thinning lines both in logarithm scale (Figure 3a) and 
in untransformed density units (Figure 3b). The dynamic -  mortal-
ity (D- P- NBME) model strategy followed by the dynamic -  density 
model (D- P- LME) gave rather high self- thinning lines. Not only is 
this behavior unsupported by our observed data, but also is incon-
sistent with the current knowledge of Nothofagus forest dynamics 
(Pollmann, 2003; Veblen, 2007; Veblen & Ashton, 1978; Veblen et 
al., 1979; Veblen et al., 1996; Veblen et al., 1981). The first-meas-
urement strategy (D- P- NLME) did not provide an appropriate self- 
thinning line for our observed data (Figure 3b). On the contrary, both 
static plot- level strategies (S- P- LME and S- P- LQMM) offered us the 
best behaviorof the observed data, by capturing the limiting rela-
tionship of population density as individual average size increased. 
Not only did the estimated intercept and slope parameters for the 
self- thinning line differ among modeling strategies, but also their 
variances (Table 3).

Although both S- P- LME and S- P- LQMM modeling strategies pro-
vided the closest approximation to our data, we believe S- P- LQMM 
is more suitable for self- thinning estimation because it was able to 
better capture the frontier relationship of density, even if it was a 
bit higher than the observed maximum densities. This method could 
serve as a way for accounting for the sampling error scheme used for 
collecting the data, in the sense that we might not be able to sam-
ple some locations with higher densities. Furthermore, a quantile 
regression model, as our S- P- LQMM, makes no assumptions about 
the distribution of the residual error, which allows correct inference 
about other quantiles.

There were also important and statistically significant differences 
in determined carrying capacity from all of the modeling strategies. 
The overall mean value was 1429 ± 121 (mean ± SE) yet ranged from 
929 to 3,900 depending on the method. Mean values by method 
differed by over 68%, highlighting the large differences across the 
modeling strategies. In general, the predicted carrying capacity was 
higher for the individual- level and the dynamic strategies (Table 4). 
The only exception to this trend was the D- P- NLME strategy where 
the predicted carrying capacity was the lowest.

The Scheffe’s test delineated three distinct groups: The first 
one was formed by the individual- level and the dynamic mortality 
model; the second one was formed by the dynamic density model, 
followed by static, site- level quantile regression, stochastic regres-
sion, and linear mixed- effects approaches; and the third one was 
for D- P- NLME. Although no statistical differences were detected, 
the S- P- LME strategy was much closer to the predictions given by 
D- P- NLME than quantile regression (S- P- LQMM) and stochastic re-
gression. In addition, the average predicted SDImax for the D- P- LME 
strategy was much higher than any observed forests at a given index 
diameter. Both S- P- LQMM and S- P- SFMM provided maximum pop-
ulation densities differentiating by only 78 trees/ha, but S- P- LQMM 
overall predicted value was closer to the overall mean value for a 

(15)ŜDImaxi
= N̂max |dbase i

(16)SDImaxi = f(�,Xi)+ei,
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secondary Nothofagus forests with an average size in diameter of 
25 cm. In addition, S- P- SFMM provided several plot- level values that 
were generally too low, while S- P- LQMM was more consistent and 
had an narrower range of plot- level values. Therefore, we favored 
the predictions of carrying capacity by the static, site- level quantile 
regression mixed- effects model strategy (S- P- LQMM).

Based on a variety of alternative models, carrying capacity was 
found to be effectively modeled as a function of climatic, species 

diversity, and abundance of pioneer species composition. The best 
model used variables representing: species diversity (i.e., Shannon 
index) and climatic conditions (i.e., precipitation in the driest month). 
The model had an error of about 13.5% with respect to the mean 
observed value of SDImax. Furthermore, the overall fit of the model 
was significantly better than all of the other models examined. The 
behavior of the carrying capacity model is shown in Figure 4 by using 
fixed (low, mean, and high) values of the predictor variables of pre-
cipitation in the driest month and Shannon’s index. The results sug-
gest that carrying capacity had a slight unimodal relationship with 
pioneer species composition, but was much more sensitive to pre-
cipitation in the driest month and Shannon’s index, which showed 
positive relationships with carrying capacity.

4  | DISCUSSION

In this analysis, the difficulty of determining site- level carrying capac-
ity was demonstrated given the range of contrasting values obtained 
from the various alternative strategies examined. To our knowledge, 
relatively few studies have examined the effects of contrasting 
modeling strategies using the same dataset, while simultaneously 
accounting for hierarchies in the data. Overall, we indicated that the 

F IGURE  3 Self- thinning lines from different modelling strategies 
in logarithmic scale (a) and untransformed units (b). Static site- level 
mixed- effects model (S- P- LME), Static site- level quantile regression 
mixed- effects model (S- P- LQMM), Static site- level stochastic 
frontier regression mixed- effects model (S- P- SFMM), Dynamic 
site- level stem density mixed- effect model (D- P- LME), Dynamic 
site- level mortality negative binomial (D- P- NBME), and Dynamic 
site- level based on first measurement (D- P- NLME) represents to 
model (3), (10), (13), and (14), respectively

TABLE  3 Estimated intercept and slope for the self- thinning line 
for each modeling strategy

Modeling strategy Estimated �̂0 Parameters �̂1

S- P- LME 11.4787 −1.2741

S- P- LQMM 12.257 −1.4742

S- P- SFMM 11.71 −1.33

D- P- LME 14.535 −2.2396

D- P- NBME 16.352 −2.7194

D- P- NLME – –

Note. We do not report the parameters for the D- P- NLME strategy, be-
cause the parameters are not directly comparable with the other 
strategies.

TABLE  4 Mean predicted carrying capacity for each modeling 
strategy

Modeling strategy
Carrying capacity 
(trees/ha) Scheffe test

S- T- LME 1780.6 a

D- P- NBME 1764.2 a

D- P- LME 1444.2 b

S- P- LQMM 1349.8 b

S- P- SFMM 1272.2 bc

S- P- LME 1194.3 bc

D- P- NLME 1047.0 c

Note. Scheffe’s multiple comparison test results at 5% significance level 
(different letters represent statistical differences).
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relatively simplistic static data covering a range of conditions and 
a suitable statistical model, which addressed the hierarchical struc-
ture of the data, produced the most reliable results for estimating 
self- thinning and carrying capacity. This is important as it allows the 
larger dataset to be used and suggests that remeasurements may not 
provide more robust estimates of self- thinning behavior. It is impor-
tant to highlight that the S- P- LQMM strategy provided both a suit-
able approach for frontier estimation and a method for assessing the 
site- level factors that may influence the carrying capacity.

The high variation of the predicted carrying capacity among 
the various strategies indicates that the assumptions and results 
from any alternative must be reviewed carefully. For example, some 
methods had relatively high variation in estimated site- level car-
rying capacity, while others showed much more limited variation. 
This would strongly influence ecological inference and potential ad-
ditional relationships examined as was conducted in this particular 
analysis.

Although the individual- level- based strategy (S- T- LME) has been 
devised for mixed- species forests like the ones examined in this 
analysis, we believe the method gave too wide of a range for carry-
ing capacity and the overall mean that was too high. In comparison 
with the site- level LQMM strategy (S- P- LQMM), the individual- 
level- based strategy (S- T- LME) provided an estimate of site- level 
carrying capacity that was 32% higher. Likewise, the dynamic- based 
strategies tend to provide estimates too high for the self- thinning 
line. This may indicate that dynamic methods may be overly sensitive 
to mortality dynamics and too limited to represent a broad range 
of conditions given the strong reduction in available data for this 
method. Nonetheless, the density model (equation 10), which was 
based on dynamic data, may be better suited for estimating density 
trajectories as in traditional growth models, such as in García (2009). 
However, the observed trends from the dynamic data in this analysis 
may be influenced by the smaller dataset used and assessment with 
much larger datasets should be conducted.

As found in this analysis, carrying capacity was not independent 
of site- specific conditions. Prior research on self- thinning has sug-
gested that the limiting relationships between population density 
and average individual size are independent of site factors (Pretzsch 
& Biber, 2005; Reineke, 1933; Yoda et al., 1963). This simplification, 
up to some extent, broadens the use of this concept in applied forest 
ecology. As previously found by other studies (Andrews et al., 2018; 
Bi et al., 2000; Weiskittel et al., 2009; Zhang et al., 2013), we have 
also shown, but for the first time in Nothofagus forests, that carrying 

FIGURE 4 Behavior of carrying capacity depending on: 
dominance of pioneer species (i.e.,proportion of basal area in 
Nothofagus species); a climate variable (i.e., precipitation in the driest  
month);  and tree species diversity (i.e., Shannon index). Carrying 
capacity is represented by SDImax. Species diversity levels were set to 
low (a),  medium (b), and high (c) by using the values of 0.05, 1, and 2 
for the Shannon index, respectively
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capacity depends on an array of factors including site productivity, 
species diversity, and successional stage of development. Although 
several formulations could be used for representing site produc-
tivity (Stage & Salas, 2007), we focused on identifying bioclimatic 
variables that had a biologically consistent behavior. For this anal-
ysis, we found that the precipitation in the driest month negatively 
affected carrying capacity and effectively represented site produc-
tivity. Higher precipitation in the driest month resulted in a greater 
carrying capacity, which is consistent with biological expectations. 
Therefore, under the current climate change global scenario, we may 
expect a decline in maximum carrying capacity for the majority of 
this forest type, which were similar to the general recent findings 
for Andrews et al., (2018) for the Acadian Region of North America.

Interestingly enough, species diversity (represented by the 
Shannon index) may help to overcome the effect of adverse cli-
matic conditions as greater species diversity increased site- level 
carrying capacity. We think that is because of the resource- use 
differentiation among different functional groups. In addition, the 
proportion of basal area in the pioneer species (a proxy for stage 
of development) has a quadratic effect into carrying capacity. Our 
results indicated that there was an optimum proportion of basal 
area occupied by pioneer species, which was approximately 50% 
in this analysis. Therefore, pure Nothofagus forests will not likely 
achieve the maximum potential carrying capacity. This finding is 
in line with the additive basal area concept (Lawes et al., 2006; 
Lusk, 2002), which has also been suggested in Nothofagus forests 
as well (Donoso & Lusk, 2007; Donoso & Soto, 2016). This idea 
suggested that both shade- tolerant species contributed in adding 
more basal area to a forest because of resource- use differenti-
ation among various functional groups. Our findings are also in 
agreement with current research on assessing the mixing of spe-
cies in tree growth (Piotto, 2008) as well as forest productivity 
worldwide (Liang et al., 2016). However, our findings differ from 
those of Weiskittel et al., (2009) who found that site- level carry-
ing capacity increased with primary species composition purity for 
three species in the Pacific Northwest, USA. This may highlight an 
important distinction between temperate plantations and natural 
rainforests as were examined in this particular analysis.

5  | CONCLUDING REMARKS

The modeling strategy involving the use of static, population- level 
data and linear quantile regression mixed- effects provided a relia-
ble ecological behavior for both self- thinning estimation and mod-
eling carrying capacity. The type of data (i.e., static and dynamic) 
heavily influenced the findings for self- thinning and carrying ca-
pacity with dynamic methods tending to provide much higher es-
timates. In particular, the density model based on dynamic data 
tended to overestimate the self- thinning line, but could likely be 
a suitable tool for growth modeling. By fitting the equations in a 
mixed- effects framework, the evaluation of various external fac-
tors that may influence carrying capacity could be assessed. In 

this analysis, climatic, stage of development, and species diversity 
were found to be influential. Although the analysis highlighted the 
strong influence of modeling strategy on self- thinning and maxi-
mum carrying capacity, the data, particularly the dynamic data, 
were relatively small despite covering a wide range of conditions. 
Additional analyses using more extensive datasets across a vari-
ety of species are likely necessary to verify the findings presented 
for this analysis. Overall, the findings highlight the challenge in 
identifying and defining self- thinning relationships and maximum 
carrying capacity despite being fundamental concepts in applied 
ecology and management.
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