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Predicting the occurrence of large-diameter trees using
airborne laser scanning
Lauri Korhonen, Christian Salas, Torgrim Østgård, Vegard Lien, Terje Gobakken, and Erik Næsset

Abstract: Large-diameter trees are important for both ecological and economic reasons, but they have become increasingly rare.
Thus, there is an interest in easily locating such trees, and for this purpose, the use of airborne laser scanning (ALS) seems
suitable. Our objective was to assess the accuracy of area-based ALS estimation in predicting the number of large-diameter Scots
pines (Pinus sylvestris L.). A sample of 856 trees with a diameter >35 cm were measured from 1109 sample plots located in eastern
Norway. We fitted negative binomial and zero-inflated negative binomial models for predicting large-diameter tree counts.
ALS-derived and external variables were used as predictors when fitting the models. The accuracy was assessed based on the
weighted kappa coefficient and cross validation. Our best model was based on three ALS height distribution variables, one
horizontal ALS variable, and plot elevation. Its overall accuracy was 65.8% and the weighted kappa was 0.55. Although there was
a clear relationship between the response and the proposed predictor variables, fairly large errors in the predicted large-
diameter tree counts were common.

Key words: large trees, LiDAR, area-based method, negative binomial regression, old growth.

Résumé : Les arbres de grand diamètre sont importants, à la fois pour des raisons écologiques et économiques, mais ils sont
devenus de plus en plus rares. Il y a donc un intérêt à localiser facilement ces arbres et l'utilisation du balayage laser aéroporté
(BLA) semble appropriée pour ce faire. Notre objectif était d'évaluer la précision d'une estimation basée sur la surface obtenue par
BLA pour prédire le nombre de pins sylvestres (Pinus sylvestris L.) de grand diamètre. Un échantillon de 856 arbres, d'un
diamètre > 35 cm, a été mesuré à partir de 1109 placettes échantillons situées dans l'est de la Norvège. Nous avons ajusté des
modèles binomiaux négatifs et des modèles binomiaux négatifs à excès de zéros pour prédire le nombre d'arbres de grand
diamètre. Des variables obtenues par BLA et des variables externes ont été utilisées comme prédicteurs lors de l'ajustement des
modèles. La précision a été évaluée sur la base du coefficient kappa pondéré et par validation croisée. Notre meilleur modèle était
basé sur trois variables de distribution de hauteur obtenues par BLA, une variable horizontale obtenue par BLA et l'altitude de la
placette. Sa précision globale était de 65,8 % et le coefficient kappa pondéré était de 0,55. Bien qu'il y ait une relation claire entre
la variable de réponse et les variables prédictives proposées, d'assez grandes erreurs dans la prédiction du nombre d'arbres de
grand diamètre étaient courantes. [Traduit par la Rédaction]

Mots-clés : grands arbres, LiDAR, méthode d'estimation basée sur la surface, régression binomiale négative, forêt ancienne.

1. Introduction
Large trees are rare in many forests and difficult to find. They

are important for both economic and ecological reasons. Large
trees dominate the structure, dynamics, and function of many
temperate and tropical forests (Lutz et al. 2012), and their occur-
rence controls a series of ecological processes. As pointed out by
Franklin et al. (1987), a falling large tree often kills other trees,
thus controlling stand mortality, influencing regeneration, and
mixing forest soil by uprooting other trees. Large standing-dead
trees (i.e., snags) are a major resource for the ecosystem because of
the large array of organisms present in the decaying log and be-
cause they provide shelter for animal species (Franklin et al. 1987).
Large trees are key features of old-growth forests, and as an eco-
logical rule, old-growth forests are less common than young for-
ests (Oliver 1980).

Intensive management of commercial forests in the Nordic
countries means that trees are usually cut before the forest
reaches the old-growth stage. Also, on a worldwide scale, old-

growth forests are rare (Burrascano et al. 2013), and even then, the
number of large trees in them may be relatively small (e.g., 12–
20 trees·ha–1, Salas et al. 2006). Therefore, finding large trees dur-
ing an inventory can be methodologically challenging, and from
an economic perspective, finding suitable timber is sometimes
cost prohibitive. For instance, carpenters working with the
restoration of old wooden churches and other buildings of great
historical interest need saw logs with exceptionally large dimen-
sions, and these are not found in commercial short-rotation for-
ests (e.g., Godal 1996).

Airborne laser scanning (ALS) has the potential to replace tradi-
tional inventories as a main data source for forest management
planning (Næsset 2014; Maltamo and Packalen 2014). The increas-
ing availability of ALS data opens new possibilities for ecological
studies. In particular, ALS can provide wall-to-wall measurements
of the ecologically important properties of the canopy structure,
which are otherwise impossible to obtain using field-based meth-
ods. Müller and Vierling (2014) provide an extensive review of the
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application of ALS data for biodiversity studies, especially the
assessment of animal and plant habitats. ALS has also been ap-
plied to detect snags (Martinuzzi et al. 2009; Wing et al. 2015),
other types of deadwood (Maltamo et al. 2014), and cavity trees
(Eskelson et al. 2009). However, we are not aware of any studies
that consider the ALS-based inventory of living trees with large
diameters, although some of the methods applied in snag inven-
tories may also be applicable to the inventory of large-diameter
trees.

ALS-based forest inventories are usually performed using the
area-based method (Næsset 2002). The inventory area is covered
wall to wall by ALS data. A sample of field plots is distributed
across the area, often following commonly adapted sampling
designs such as systematic and stratified sampling. Volume and
other stand variables are either measured or estimated at the plot
level. The plots are positioned with Global Navigation Satellite
System (GNSS) receivers, and laser echoes from within the plot
borders are used to calculate the ALS variables that describe the
height and density of the canopy. These ALS variables are used as
predictors in statistical models that predict a response variable of
interest such as the timber volume. These models can then be
used to predict forest variables over the whole inventory region.

Tree size can be quantified based on diameter at breast height
(DBH, 1.3 m), height, or volume. In this study, we specifically focus
on trees with a large diameter, because it is the easiest dimension
to be measured in the field, and it represents both commercial
and ecological interests. The original initiative for this research
came from a specialized sawmill that wanted to enhance the pro-
curement of sawlogs with very large dimensions. From a remote-
sensing perspective, the quantification of tree size based on DBH
is more difficult than a quantification based on height. ALS sen-
sors can measure the tree height directly with only a slight under-
estimation (Gaveau and Hill 2003), and the tree height correlates
with the DBH. However, tree height–diameter curves are often
asymptotic, i.e., old, dominant trees tend to grow little in height
but continue to grow in diameter up to very great ages. Thus, if
only the height is known, it is difficult to predict the DBH of a
dominant tree. However, the DBH is also correlated with crown
diameter (Ilvessalo 1950), and the crown diameters estimated
from ALS data may improve the predictions of stem volume
(Popescu et al. 2003).

The prediction of stand-level variables such as mean diameter
(Næsset 2002) and diameter distributions (Gobakken and Næsset
2004) are well-known ALS applications. However, studies focusing
on large trees are conducted mainly as long-term experiments
using field measurements (e.g., the study of snags by Ganey and
Vojta (2005)), but research on methods for predicting the occur-
rence or density of large trees using remote sensing is lacking.
Indeed, the estimation of the occurrence of individual large trees
is more difficult than the estimation of aggregated properties
such as the mean diameter of all trees. Aggregated properties may
not be adequate for the purposes of large-diameter tree inventory,
because stands may have only a few trees with very large diame-
ters, and therefore, their contribution to the estimate means may
be small. Thus, to produce reliable information for large trees,
direct modeling might be a viable alternative to the extraction of
large-tree information from existing mean DBH or diameter
distribution databases.

The area-based method can be applied using relatively low
pulse densities (<1 m−2), which makes it cost effective and appli-
cable for large areas. With low pulse density, individual trees
cannot be detected. It is possible, however, to interpolate canopy
height models (CHMs) that describe the height of the canopy sur-
face above ground level using low pulse density ALS data. Using
1 m resolution CHMs, tree groups can be distinguished, although
their area may be overestimated due to the low resolution.
Pippuri et al. (2012) applied ALS data with a nominal pulse density
of 0.6 m−2 to calculate horizontal area-based variables based on a

CHM. These included texture (Haralick et al. 1973) and landscape
(McGarigal and Marks 1995) variables such as the mean size of
canopy patches and the mean area of connected canopy pixels
above a specified height threshold. Such variables might also cor-
relate with the presence of large trees.

Linear regression models commonly applied in area-based ALS
estimation are not suitable for modeling count (i.e., non-negative
integer) variables (Consul 1989). Examples of studies where the
response variable is a count include tree mortality (Affleck 2006)
and also the number of seedlings in a regeneration plot (Zhang
et al. 2012). It is common that real-world count data have more
zeroes than a statistical randomization would imply. Such data
are commonly called zero inflated. To fit models for zero-inflated
data, a generalized linear model (GLM) framework must be used.
GLMs extend linear statistical modeling to response distributions
that belong to the exponential family (Schabenberger and Pierce
2002). A GLM consists of three components: a probability density
function, a linear predictor, and a link function (McCulloch and
Searle 2001). Several models have been proposed to handle zero-
inflated count data (Famoye and Singh 2006). Among the most
used are the zero-inflated Poisson and the zero-inflated negative
binomial (ZINB) models. For example, Zhang et al. (2012) com-
pared different negative binomial (NB) models to predict tree
recruitment and obtained their best results with ZINB models.
Further details on zero-inflated models can be found in Consul
(1989) and Affleck (2006). As an alternative, nonparametric meth-
ods such as the k-nearest neighbor can be used, because they do
not require assumptions concerning the distribution of the re-
sponse variable (Eskelson et al. 2009). However, Eskelson et al.
(2009) recommended NB models instead of nonparametric
methods for the prediction of stand-level cavity tree and snag
abundance.

The objective of the present study was to estimate the number
of large-diameter trees at the plot level using an area-based ALS
approach and GLMs applicable to the count data and to evaluate
the accuracy of the predictions using different types of predictor
variables. In addition to the commonly used canopy height and
density variables (Næsset 2002), we also tested variables that
describe the horizontal canopy structure (Pippuri et al. 2012).
Additionally, we considered external plot-level variables such as
elevation, because the occurrence of large trees may be affected
by the previous harvest history and with less focus on the uti-
lization of more marginal and less accessible forests at higher
elevations.

2. Materials and methods
2.1. Data

The study area is situated in the municipality of Tolga, located
in Hedmark County, Eastern Norway (62°23=N, 11°02=E; Fig. 1).
Boreal forests in Tolga were intensively harvested until the late
19th century to supply the nearby mines, but some areas re-
mained untouched. Scots pine (Pinus sylvestris L.) forests occur in
the valleys between the treeless fells, with Norway spruce (Picea
abies (L.) Karst.), downy birch (Betula pubescens Ehrh.), and goat
willow (Salix caprea L.) occurring as minor species. In addition,
pure birch forests are common, especially in the peatlands, close
to water bodies, and at higher elevations near the alpine tree line.

ALS data from five separate east–west oriented flight lines
(strips) were obtained from the region (Fig. 1). The strips were
spaced 6 km apart. The ALS acquisition was performed on the 6th
and 8th of August 2006 as a part of the Hedmark County ALS
sample survey (Gobakken et al. 2012). Two different Optech
ALTM3100 scanners were used, but only one strip was scanned
with the second sensor. The ALS data were acquired with similar
settings across all strips: altitude, 800 m above ground level; flight
speed, 75 m·s−1; pulse repetition frequency, 100 kHz; scan fre-
quency, 55 Hz; half scan angle, 17°. The resultant pulse density was
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2.8 m−2, and the footprint size was 0.68 m. The data was delivered
by the contractor (Blom Geomatics AS) and contained the XYZ
coordinates of the echoes relative to ground level.

Field plots 32 m × 32 m in size were placed directly below the
flight lines, and the plots on a given line always bordered the
previous one. The fieldwork was conducted from the 5th to
the 21st of October 2009 by walking along the lines with a GNSS
navigator. The selection of the sections of the sample strips to be
surveyed was subjective and based on local knowledge so that the
resultant data set would be as large and diverse as possible (Fig. 1).
A total of 1109 plots were sampled. Trees with a DBH > 35 cm
(n = 855) were calipered and positioned using real-time differen-
tially corrected GNSS. The positioning accuracy was typically bet-
ter than 1 m, but this could occasionally decrease if the real-time
differential correction data was unavailable. One tree in a plot
corresponds to 9.8 trees·ha−1. Approximately every fifth tree
(n = 145) was also measured for height. In our sample, 94% of the
trees are pines, followed by spruce (5%) and deciduous species.

The distribution of the large-diameter trees (Fig. 2) shows that
the majority of the plots (66%) had no large trees. Only a small
percentage of plots (6.1%) had more than three large-diameter
trees. In addition, there was no clear relationship between the
height and diameter of the large-diameter trees (Fig. 3). It should
be noted that we did not measure trees with a DBH < 35 cm.

2.2. Predictor variables
Three types of predictor variables were used for modeling pur-

poses: variables derived from the canopy height distributions,
CHM variables, and external variables. A complete list of the pre-
dictors and their abbreviations is given in Table 1. Canopy height
distribution variables were calculated at the plot level using only
echoes above a 1.3 m height threshold. We computed several
height percentiles (h0, h10, …, h90) from this distribution. Further-
more, we derived several measures of canopy density. The calcu-
lation of point variables representing canopy density was carried
out for 10 different vertical fractions of equal thickness (Næsset
2004). The thickness of each fraction was defined as one-tenth of
the distance between the 95 percentile and the lowest canopy
height, i.e., 1.3 m (Gobakken and Næsset 2008). Canopy densities

were then computed as the proportions of laser echoes above
fraction 0, 1, ..., 9 to the total number of echoes and denoted as d0,
d1, …, d9, respectively. In addition, the maximum, mean, and co-
efficient of variation (cv) of the echo heights were calculated. Each
of these variables was calculated twice using the first and last
echoes as two separate data sets. We respectively use lowercase
letters “f” and “l” to indicate the variables derived from the first
and last echoes.

ALS variables that describe the horizontal canopy structure
were calculated from the CHMs created with 0.5 m resolution. The
CHM was created by assigning each grid cell the value of the
highest ALS echo within a 1 m radius from the center of the cell.
This method was selected because it also enables the creation of
smooth CHMs from low-density (1 < echoes·m−2) data (Mustonen

Fig. 1. Location of the study area and the placement of survey strips within it. The black dots indicate field plots within the scanned strips.

Fig. 2. Observed tree counts per plot within the 1109 plots.
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et al. 2008; Pippuri et al. 2012) and, therefore, is commonly applied
in practical inventories to create CHMs for stand delineation. As
our initial ALS pulse density of 2.8 m−2 was slightly higher than
that commonly used in practical inventories (0.5–1.0 m−2), we
reduced it to 1 m−2 by randomly selecting one echo from each 1 m2

cell and then created an alternative low-resolution CHM using a
1 m resolution and a 2 m search radius (Mustonen et al. 2008). The
ALS height distribution variables were not recalculated with the
lower pulse density, as density reduction does not significantly
influence the estimation results (Maltamo et al. 2006).

The CHMs were used to calculate horizontal and texture vari-
ables for each plot. Horizontal variables were calculated similar to
Pippuri et al. (2012). The image was first divided into canopy and

ground patches (separate groups of eight-connected pixels) using
height threshold values of 10, 12.5, 15, and 17.5 m. The number of
patches, the mean area of patches, and the standard deviation of
the area of patches were then calculated separately using canopy
and ground-and-canopy patches as two separate data sets. In ad-
dition, for canopy patches, we also calculated the total area, mean
pixel height, standard deviation of the pixel heights, and the Eu-
ler number (the number of canopy patches minus the total num-
ber of holes in these patches). Haralick's texture metrics (Haralick
et al. 1973) of contrast, correlation, energy, and homogeneity were
also calculated from the CHMs. In the texture calculation, the
CHM was reclassified into eight gray-level classes, and the vari-
ables were calculated as the mean of all the directions using three
and six pixel offset values.

Finally, external variables were obtained from different sources.
The terrain elevation, slope, aspect, and distance to the nearest
road were extracted from topographic map data for every plot. In
addition, a site productivity index was obtained from a forestry
database. These variables helped us to quantify the effects of
different growth conditions and management histories that oc-
curred within the sample area.

2.3. Modeling techniques
When using GLMs, the data are assumed to follow a prespecified

distribution, which must be defined in the model fitting. As our
data consist of counts, the normal distribution is not a good op-
tion, but Poisson or NB distribution models can be considered
instead. Firstly, we tested Poisson regression as the simplest alter-
native, but the model diagnostics indicated an inadequate fit due
to overdispersion. NB regression performed better, as it extends
the Poisson regression by adding a dispersion parameter that is
independent of the mean (Affleck 2006). However, if the data are
clearly zero inflated, then the NB model may not be flexible
enough. In such cases, ZINB models may be appropriate.

To specify a GLM, we have to define both the probability
density function of the random variable and the link function,
which merge the regression coefficients and the covariates of
the model. The NB distribution's probability density function
can be written as

(1) P(Y ! y) !
"(y # $%1)

"(y # 1)"($%1)
! $%1

$%1 # &
"$%1

! &

$%1 # &
"y

where & is the mean parameter, $ is the dispersion parameter, and
y is the random variable. The NB model can be seen as a general-
ization of the Poisson model in which the variance (characterized
by the dispersion parameter, $) can differ from the expected
value. Thus, the mean of the NB distribution is &, as in the Poisson
model, but the variance is & + $&2 (Zhang et al. 2012). When $ is
zero, the NB distribution simplifies to the Poisson distribution. NB
regression is based on fitting the NB distribution (eq. 2) to the
data, so that the mean parameter & (equal to ') is estimated as a
function of the predictor variables. Furthermore, the dispersion
parameter $ is estimated as a constant. To obtain & from the
regression equation, an inverse transformation of the selected
link function must be applied. The default is the logarithmic link
function, i.e., the & is obtained as exp(XT!).

ZINB regression extends the NB regression by introducing an
additional binomial component that enables estimation that is
even more flexible. ZINB models are appropriate when the data
can be seen to be generated by two stochastic processes, one of which
only contributes zeroes (Welsh et al. 1996). Our data can be seen to
have such an interpretation, in that some of the plots are candidates
for having large trees, whereas others could immediately be seen as
not having large trees. The minimum field-measured height for
a large tree was 7 m, and thus, we hypothesized that the plots
where all of the echo heights were smaller than this limit would

Fig. 3. Height–diameter scatterplot for large-diameter sample trees
(n = 145).

Table 1. List of all predictor variables and their abbreviations.

Abbreviation Definition

Height distribution variables
max, mean, cv Maximum, mean, and coefficient of variation of

echo heights above 1.3 m (m)
h0, h10, …, h90 Height percentiles for echoes above 1.3 m (m)
d0, d1, …, d9 Density variables for echoes above 1.3 m (%)

Horizontal CHM variables
Ncp, Acp The number of canopy patches and their total area
Ameancp, Asdcp Mean and standard deviation of the area of

the canopy patches
Hmeancp, Hsdcp Mean and standard deviation of the height of

the canopy patches
Nap Number of all (ground and canopy) patches
Ameanap, Asdap Mean and standard deviation of the area of

all patches
euler Euler number of the canopy patches

CHM texture variables
con, cor, ene,

hom
Contrast, correlation, energy, and homogeneity

External variables
slope, aspect,

elev
Slope, aspect, and elevation of the plot

rdist, sindex Distance to road and site index
Note: For height distribution variables, Subscripts f and l indicate if the

variable was calculated using first-and-only or last-and-only echoes, respectively.
For horizontal canopy height model (CHM) variables, subscripts h and l indicate
if the variable was calculated using high (0.5 m) or low (1 m) resolution CHM,
respectively; the numeric subscript indicates the height that was used to divide
the patches into ground and canopy. For CHM texture variables, the number
subscript indicates the offset distance.
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contribute only zeroes. The remaining plots either could or could not
have large trees in them.

In accordance with Zhang et al. (2012), the probability mass
function of the ZINB mixture model with binomial and NB com-
ponents is

(2) P(Y ! y)

! #( # (1 % ()! $%1

$%1 # &
"$%1

y ! 0

(1 % () "(y # $%1)
"(y # 1)"($%1)

! $%1

$%1 # &
"$%1

! &

$%1 # &
"y

y ) 0

where ( is a parameter representing the probability that the ob-
servation is drawn from the zero-inflation component, & is the
mean parameter, $ is the dispersion parameter, and y is the ran-
dom variable. When $ = 0, the model is similar to a zero-inflated
Poisson model. In a ZINB model, both & and ( are estimated as
linear combinations of the covariates. If necessary, different cova-
riates can be used for & and (. For (, the logistic link function is
typically used. In this case, the expected value of the whole mix-
ture distribution (i.e., the model prediction) is not directly one of
the parameters but depends on both ( and &, i.e., E[Y] = ' = &(1 – ()
(Affleck 2006).

We tested both the NB and ZINB models but found that the ZINB
models provided a slightly better prediction accuracy. Thus, we
employed ZINB as the main model, but we also report the best NB
model for comparison purposes because NB models are simpler.
The ZINB models were fitted using the pscl package (Zeileis et al.
2008) in R statistical software (R Core Team 2013). The NB models
were also fitted in R, using the glm.nb function from the external
library MASS (Venables and Ripley 2002). The Akaike information
criterion (AIC) (Akaike 1974) was calculated based on the esti-
mated likelihoods and the number of model parameters so that
smaller values indicate a better model fit.

2.4. Variable selection and accuracy assessment
First, we created separate models based on each group of pre-

dictors reported in Table 1. An exhaustive search was performed
to select the two or three best predictor variables from each
group. These variables were candidates for the general model, and
an exhaustive search was again made to find the two or three most
influential variables for the general model. These variables were
fixed into the model, and manual experimentation was finally

applied to test different supplementary variables and their trans-
formations for the final model.

The different models were evaluated based on a leave-strip-out
cross validation. In leave-strip-out cross validation, the five origi-
nal strips were split into nine substrips based on the terrain (52–
204 plots per substrip). Each substrip was left out of the data one
at a time, and predictions for that strip were produced using a
model that was fitted using the remaining eight substrips. In this
way, the predictions were not influenced by plots in the geograph-
ical vicinity. Error matrices were used to quantify the model ac-
curacy. Each tree count with 0−8 trees had its own category, but
all of the plots with >8 large trees were pooled so that the error
matrix had 10 categories.

The main criterion for the prediction accuracy was the weighted
kappa coefficient (w*) (Cohen 1968). The original kappa coefficient
was developed for nominal variables, and therefore, it is not ideal
for ordinal variables such as counts because it assigns equal
weight to small and large errors (Næsset 1996). The weighted
kappa assigns observations on the diagonal of the error matrix —
weight one, one step away from the diagonal; weight two, two
steps away from the diagonal, etc. — so that large distances from
the diagonal also have large weights. Apart from this change, the
interpretation is similar to the ordinary kappa, i.e., a value of zero
indicates a random classification and a value of one a perfect
classification. Ordinary kappa (*), overall accuracy (OA, the per-
cent of all observations classified correctly), producer's accuracy
(PA, the percent of correct classifications in each class observed in
the field), and user's accuracy (UA, the percent of correct classifi-
cations in each predicted class) were also computed.

3. Results
Visual inspection indicated that it was possible to detect many

large crowns directly from the point cloud (Fig. 4) because the
echo density was larger than seen in most area-based applications.
However, it was common that even though there was a large
crown visible in the data, no large trees were measured in the
same field location. An obvious reason could be that the diameter
of the tree was less than 35 cm, and therefore, it was not included
in our field data. Secondly, there was a 3 year difference in time
between the ALS data acquisition (2006) and the field inventory
(2009). Thus, harvests and windthrow could have removed some
trees after the ALS acquisition, although we saw no evidence that
any such large-scale events had taken place when we undertook
the fieldwork. Sometimes there were offsets in the field-measured

Fig. 4. Two examples from the ALS strips with some large trees (white triangles) located in field. Darker points indicate high laser echoes.
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tree positions and the crown echoes which related to them, which
might have been caused either by errors in the GNSS positioning
or by tilted stems. Because of these differences, high echoes could
sometimes be located outside the plot on which a large tree was
positioned in the field or vice versa. Some of these obvious errors
were corrected manually, but some may still have remained un-
detected even though all plots were visually inspected. These in-
consistencies between the data sets contributed to the somewhat
low accuracy in the prediction of the plot-wise tree counts.

The best ZINB models obtained using variables from each group
(Table 1) are shown separately in Table 2. The results show that the
standard height distribution variables provided better accuracy
(w* = 0.46) than any of the other variable groups. Horizontal vari-
ables such as the number of CHM regions above a specific height
threshold and their mean area had a good correspondence with
the visual impression of the point cloud (Fig. 5) but did not reach
as good an accuracy as height distribution variables (w* = 0.37 for
both resolutions). The texture variables only reached w* = 0.31. Of
the external variables, plot elevation and slope were slightly cor-
related with the presence of large trees. The prediction accuracy
using only these variables remained poor (w* = 0.14), but this is
reasonable as these variables are not directly related to tree size.

The accuracy assessment of the final ZINB model including all
variables is shown in Table 2, and its parameter estimates are
shown in Table 3. The importance of the height distribution vari-
ables was also reflected in the final model, which contained five
predictor variables: two density variables (d6f and d1l), one height
percentile (h90l), the logarithm of the plot elevation (elev), and the
mean area of all horizontal patches obtained using a 12.5 m height
threshold (Ameanap12.5h). The summary information about these
variables is given in Table 4. This model reached w* = 0.55, which
is clearly larger than the values obtained with any of the single
variable groups. Notably, the height distribution variables
selected in the final model were different from the variables se-
lected in the model that had only height distribution variables,
i.e., they functioned better with elev and Ameanap12.5h than when
alone. Some of the ZINB model's count model variables were not
significant in the zero-inflation part of the model, where only d6f,
h90l, and log(elev) were retained.

The best NB model is also reported in Tables 2 and 3. Based on
the same variables as used in the ZINB count model, it reached a
w* = 0.52. Thus, it can be seen that using the ZINB model with an
additional zero-inflation component improved the w* by three
percentage points. Furthermore, three variables were needed
in the zero-inflation part to gain an improvement over the NB
model, indicating that the zero-inflation was not directly related
to tree height as we assumed. If only one height variable was
included in the zero-inflation model, the w* decreased to 0.51, i.e.,
there was no improvement over the simpler NB model.

There were many alternative models that provided nearly the
same accuracy, but two variables were present in all of them,
namely the h90l height percentile and plot elevation. Large-diameter
trees are obviously more common in stands with large heights, so
the inclusion of a height quantile was expected. The marginal
distribution of log(elev) was nonlinear and peaked at the elevation

of 760 m, which is slightly above the mean of all plots. The reason
for this could be that the lower elevations have been harvested
more frequently and that trees at high elevations seldom reach
the lower limit of 35 cm diameter. Leaving the elevation out of the
final model decreased the w* to 0.43, which is smaller than what
was obtained using only height distribution variables. Thus, the
influence of elevation on the overall variable selection was con-
siderable.

Because the coefficients shown in Table 3 were normalized by
subtracting the mean and dividing by the standard deviation of
the original variables, the larger coefficients indicate a larger
weight in the final prediction. It can be seen that the only height
variable present in the models had the largest normalized coeffi-
cient in both NB and ZINB count models, i.e., the presence of
large-diameter trees was related to tree height. The two density
percentiles d6f and d1l had opposite signs in both models. These
variables were correlated (R = 0.75), but d1f was calculated using
first-and-only echoes and d6l was calculated using last-and-only
echoes. First echo variables typically represent the canopy sur-
face, and last echo variables represent the canopy somewhat be-
low its surface. Both variables increase with the canopy density,
but if the pulse penetration depth is small, then d1l will have a
large value in relation to d6f. Thus, the interpretation of these
opposite signs could be that large-diameter trees occurred in
places where the penetration into the canopy was small. This
corresponds well with typical old-growth pine stands where the
trees have rounded tops with dense needle layers.

The final variable in the model was mean area of all ground and
canopy patches using a 12.5 m threshold value and 0.5 m CHMs
(Ameanap12.5h). It had a negative sign in both count models, i.e., a
small mean patch area indicated more large trees. This variable
had its maximum value in plots that had no tree tops reaching
this height (12.5 m) and a smaller value if there were many of
them. Omitting Ameanap12.5h from the model only decreased the
w* to 0.52, meaning that the estimation could also be done with-
out the horizontal variables.

The error matrices for the ZINB and NB models are shown in
Tables 5 and 6, respectively. It is easy to observe that although
there was a clear correlation between the observed and predicted
values, the individual estimates frequently had fairly large errors.
For example, there was a plot that was predicted to have at least
eight large-diameter trees, but in reality, there was only one large-
diameter tree. Similarly, two plots that had at least nine
large-diameter trees were predicted as having only one or two
large-diameter trees. The standard errors of the model coefficients
were also fairly large (Table 3).

4. Discussion
The results of the area-based estimation indicated that it is

possible to predict the occurrence of large trees in a plot, but the
individual predictions are often inaccurate. Landis and Koch
(1977) characterized * values ranging from 0.4 to 0.6 as a moder-
ately successful classification, and our observed w* = 0.55 falls
within this range.

Table 2. Best models by variable group.

Variable group Predictors AIC OA * w*

Height distribution maxl, d10l, d80l 1924 61.8 0.33 0.46
Horizontal (0.5 m) Ameanap12.5 h, Hmeancp17.5 h, Ameanap17.5 h 2081 57.4 0.29 0.37
Horizontal (1 m) Ameanap12.5l, Hmeancp12.5l, euler10l 2088 58.5 0.29 0.37
Texture cor3 h, hom3 h, hom6 h 2207 54.7 0.24 0.31
External elev, slope 2414 35.6 0.11 0.14
All variables (ZINB model) d6f, d1l, h90l, log(elev), Ameanap12.5 h 1845 65.8 0.37 0.55
All variables (NB model) d6f, d1l, h90l, log(elev), Ameanap12.5 h 1907 63.6 0.33 0.52

Note: Variable abbreviations are explained in Table 1. AIC, Akaike information criterion; OA, overall accuracy; *, kappa coefficient;
w*, weighted kappa coefficient; ZINB, zero-inflated negative binomial; NB, negative binomial.
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It is likely that the inaccuracy of individual predictions is
mainly due to the problems mentioned above. We consider that
the trees that were just below the 35 cm diameter limit were the
main source of error, because they could not be separated from
the trees that were just above the limit. On the other hand, mea-
suring and positioning all trees above, for example, a 30 cm limit
would have increased the amount of fieldwork and thus de-
creased the size of the modeling data set. A later check of any
uncertain trees would have helped, but this was not possible in
our case. A better alternative might have been an interpretation of
possible large trees based on the CHM before the field campaign

and then measurement of these trees during the campaign. Espe-
cially on higher elevations, there were some trees that had very
small heights in relation to their DBH (Fig. 3). It is therefore likely
that introducing a height criterion into the definition of large
trees would have improved the prediction accuracy, because such
outliers would have been excluded. However, we only measured
height for every fifth tree, so we were unable to test a height
criterion in practice. Other possible error sources included the
occasional inaccuracy of tree positioning and the 3 year time dif-
ference between the ALS data acquisition and the fieldwork.

Standard ALS-based canopy height distribution variables seem
to suffice as predictor variables, as only one CHM-based variable
was selected into the final model, and its influence on the predic-
tions was fairly small. The 0.5 and 1 m resolution CHM variables
provided equally good results (Table 2). External topographic vari-
ables may provide useful additional information. In our case, the
plot elevation was a crucial variable in the model and leaving it
out resulted in a major decrease in accuracy. Other external vari-
ables did not improve the model.

Although the overall accuracy obtained with regressions was
not very high, the models were capable of taking into account the
large amount of zeroes and uncovering the relationships between
the variables, despite the noisy nature of the data. It is likely that
the low degree of accuracy is related to the data itself and not the
modeling technique. ZINB models performed slightly better than
the simpler NB models, but based on the available data, we cannot
be certain if this difference is real or only a result of overfitting the
model. The results above were derived from a leave-strip-out cross
validation, and the w* values were typically a few percent smaller
than in the training data. This decrease was considerably smaller
than what we observed while testing the k- nearest neighbor
method with random forest distance metric in an initial phase of
the analyses.

Affleck (2006) recommended the use of NB models without a
separate zero-inflation component, as they are simpler to inter-
pret and less prone to overfitting. However, Eskelson et al. (2009)
assumed that ZINB models might be better in cases where the data
showed evidence of two separate distributions, which was not the
case in their data of snag abundance. Zhang et al. (2012) confirmed
this assumption in their study on tree recruitment prediction.
Our results indicated that the ZINB regression was better than the
other parametric or nonparametric methods that were initially
tested, but the differences were fairly small. It would also have
been possible to convert the tree counts into trees per hectare and
use linear regression analysis, but we consider count modeling
methods to be better justified, as any such transformations would
not change the discrete nature of the data.

Fig. 5. An example of horizontal CHM variables. White color represents a CHM area above a 12.5 m height threshold. A large crown with
maximum ALS height = 15.1 m is clearly visible with both 0.5 m and 1.0 m resolutions, but no tree with a DBH > 35 cm was recorded in the
field for this location.

Table 3. Parameter estimates of the final negative bino-
mial (NB) and zero-inflated negative binomial (ZINB)
models.

ZINB model NB model

Estimate SE Estimate SE

Count model
Intercept −0.8201 0.089 −1.2084 0.070
d6f −0.4666 0.076 −0.6745 0.071
d1l 0.5973 0.060 0.6123 0.062
h90l 1.2210 0.093 1.2755 0.092
log(elev) 0.8997 0.074 0.7402 0.069
Ameanap12.5 −0.4215 0.103 −0.6915 0.095
log($) 1.9536 0.344 1.5385 0.215

Zero-inflation model
Intercept −5.4574 1.218
d6f 1.9011 0.366
h90l −2.5997 1.024
log(elev) 5.6865 1.503

Note: The ZINB model has two components: the count model
that uses the negative binomial pdf and logarithmic link and the
zero-inflation model that uses the binomial pdf with a logit link.
$ is the model dispersion parameter. The response variables were
normalized to follow the N(0,1) distribution. All variables were
statistically significant at p < 0.05. SE, standard error.

Table 4. Minimum, mean, maximum, and standard deviation (SD)
values for the variables that appear in the models.

Minimum Mean Maximum SD

d6f (%) 0.0 18.5 65.9 14.9
d1l (%) 0.0 22.9 65.8 14.0
h90l (m) 1.4 9.8 21.6 4.2
elev (m) 492 725 989 95.4
Ameanap12.5 (m2) 41.3 709 1156 473
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One of the advantages of the area-based method (which in sta-
tistical sampling terminology is a small-area estimation tech-
nique based on model predictions) compared with sample-based
inventories that do not use auxiliary data with complete geo-
graphical coverage is the ability to create maps. Maps depicting
the frequency of large-diameter trees should be valuable to guide,
for example, timber procurement efforts, because they would
guide the user to locations with large trees, although the exact
number of trees would be uncertain. If the objective is to establish
a reliable inventory of large-diameter trees, then the model pre-
dictions could be used as prior information to guide the place-
ment of a limited number of sample plots into locations where
large-diameter trees are likely to be found (Pesonen et al. 2009).

It can be argued that predicting the mean diameter of each
stand and selecting the sites where predictions indicate trees
larger than 35 cm in diameter could be used to find stands with
large-diameter trees. However, individual large-diameter trees
can also exist in stands in which the mean diameter is smaller
than this limit. If the whole diameter distribution could be pre-
cisely predicted, then separate models for large trees would not be
needed. The diameter distributions derived from remotely sensed
data tend to be rough approximations and not very accurate for
extreme values (for example, large-diameter trees). Therefore, to
directly model the variable of interest is a suitable and reliable
alternative.

Finally, the use of individual tree detection methods (e.g.,
Vauhkonen et al. 2012) would probably enable a better estimation

of the dominant tree layer features than an area-based approach.
Thus far, high pulse density (>5 m−2) ALS data acquisitions needed
for the reliable detection of individual tree crowns have usually
been viewed as too expensive for most practical applications. The
use of ALS sensors that utilize multiple-pulses-in-air technology
enables the acquisition of denser point clouds at reasonable costs,
thus making individual tree detection applications more feasible.
Nevertheless, in most cases, managers will probably choose to
minimize the cost, which means that low-density ALS data sets
will be more commonly available than data which is suitable for
single-tree segmentation. In such cases, these methods can be
applied in the mapping of, for example, large-diameter trees,
snags, or other count parameters of interest. Maps of sites with
large-diameter trees should prove valuable for managers that
need to locate large trees either for protection or harvesting.

In conclusion, our results show that GLM methods are suitable
for the area-based estimation of large-diameter tree counts. How-
ever, the predictions achieved were approximate and could have
fairly large errors, which were mostly related to problems in the
field data. ZINB models showed a better fit than NB models, but
the difference was fairly small. ALS height quantiles together with
plot elevation sufficed for prediction, but horizontal canopy vari-
ables may also improve the models.
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