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Formerly, tree height has been more difficult to measure accurately in the field than tree diameter at breast
height. As a consequence, models to predict height from diameter measurements have been widely
developed in the forestry literature. Through the use of airborne laser scanning technology (e.g., LiDAR), tree
variables such as height and crown diameter can be measured accurately, a development which has spawned
the need for models to predict diameter from airborne laser-derived measurements. Although some work
has been done for fitting such models, none have incorporated spatial information to improve the accuracy of
the predicted diameters. Using a simple linear model for predicting tree diameter from laser-derived tree
height and crown diameter measurements, we compared the performance of ordinary least squares (OLS),
generalized least squares with a non-null correlation structure (GLS), linear mixed-effects model (LME), and
geographically weighted regression (GWR). Our data were obtained from 36 sample plots established in
Norway. This is the first study to examine the use of spatial statistical models for tree-level LiDAR data. Root
mean square prediction errors in tree diameter with LME are 3.5%, with GWR are 10%, and with OLS and GLS
are 17%. LME also exhibited low variability in predicting performance across all the validation classes (based
on laser-derived height). Giving the difficulties of using parametric statistical inference (such as maximum
likelihood-based indices) for GWR, we used permutation tests as a way for detecting statistical differences.
LME was significantly better than the other models, as well as GWR was to OLS and GLS. Our results indicate
that the LME model produced the best predictions of tree diameter from LiDAR-based variables to a degree
that has previously not been possible.
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1. Introduction

Airborne laser scanning (ALS) is a powerful remote sensing system
for collecting topographic data having applications in a variety of
disciplines. ALS systems have led a revolution in remote sensing
technology during the last 10–14 years (Popescu & Wynne, 2004). As
pointed out by Reutebuch et al. (2005), the basis of this revolution is
the ability to measure directly the three-dimensional structure (i.e.,
terrain, vegetation, and infrastructure) of imaged areas and to
separate biospatial data (measurements of aboveground vegetation)
from geospatial data (measurements of the terrain surface) using
active remote sensing technologies. In ALS, a scanner which
distributes the transmitted pulses across the flight direction of the
platform is attached to the laser, and such systems canmeasure the 3D
position of points on the ground and in vegetation canopies with an
accuracy of a few decimetres (Næsset et al., 2004). Among the laser
scanner systems currently available, LiDAR (light detection and
ranging) sensors offer impressive performance that challenge phys-
ical barriers in the optical and electronic domains by offering a high
density of points at scanning frequencies of 50,000 pulses/second,
multiple echoes per laser pulse, intensity measurements for the
returning signal, and centimeter accuracy for horizontal and vertical
positioning (Popescu & Wynne, 2004). These features, make LiDAR
useful for directly assessing vegetation characteristics, and overall
providing new tools for measuring and monitoring biospatial data
across the landscape (Popescu & Wynne, 2004; Reutebuch et al.,
2005). Further reviews of ALS and LiDAR studies in general and in
forestry, can be found in Næsset et al. (2004) and references therein.

Height–diameter models are keys in conventional forest invento-
ries. In conventional forest sampling, i.e., ground-basedmeasurements
of tree variableswithin sample plots, diameter at breast height (dbh) is
measured for all the treeswithin plots, whereas height (h) ismeasured
only for a subsample of trees within plots, because h is more difficult
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and expensive to measure. In this setting, models that predict h as a
function of dbh (hereafter referred to as height–diametermodels, or h-
dbh models1) are fitted in order later to predict h of those trees based
on tree dbh alone. Several studies have been conducted on h-dbh
models (e.g. Thorey, 1932; Meyer, 1940; Curtis, 1967; Yuancai &
Parresol, 2001), including model comparisons (e.g. Zhang, 1997; Peng
et al., 2001), up to models incorporating stand-level variables (e.g.
Staudhammer& LeMay, 2000; Sánchez et al., 2003) and randomeffects
(e.g. Lappi & Bailey, 1988; Robinson & Wykoff, 2004; Lynch et al.,
2005). Several model forms have been proposed and fitted, van Laar
and Akça (p. 122, 2007) list a few.

Modelling efforts using data from laser scanning are mainly at the
plot level. Forest canopy height model (or CHM) is a digital elevation
map of the top-of-forest canopy (Nelson et al., 1998). A CHM is
relatively easy to obtain through airborne laser scanning techniques,
e.g., LiDAR, and methods for calibrating it have been advised. Several
efforts for estimating plot-level tree heights derived from LiDAR have
been conducted (e.g., Popescu et al., 2002; Popescu & Wynne, 2004).
As pointed out by Næsset et al. (2004), who reviewed the Nordic
experience in laser scanning, the main objective especially in Norway
has been to develop methods that are directly suited for practical
forest inventory at the stand level. In this setting, regression models
are fitted using laser-derived variables and field plot variables, in
order to predict stand variables (plot-wise). The stand variables of
chief interest in this regard, according to Næsset et al. (2004) have
been: mean tree height, basal area, and stand volume. Other variables
have been also predicted such as biomass and carbon (e.g., Nelson
et al., 2004), diameter and basal area distribution (e.g., Næsset &
Gobakken, 2004), and number of trees (e.g., Hudak et al., 2006, 2008).

In a laser scanning-based forest inventory framework there is a
shift from h-dbh to dbh-h models. When trees are measured on the
ground, their positions can be linked with laser measurements
(Persson et al., 2004), through a process known as segmentation,
and the trees identified from the segmentation, are known as linked
trees. Individual heights of the linked trees can be roughly estimated
from laser scanning data by using the approximated ground level and
the highest hit of the treetop (Rönnholm et al., 2004). Nevertheless,
tree diameter is not available from LiDAR data, but it is a crucial
variable in order to analyze the forest structure. Analogous to the need
in ground-based forest inventory to develop h-dbh models to predict
h of non-measured trees, in a laser-based forest inventory we need
dbh-hmodels to predict dbh. More generally LiDAR-derived variables,
not just h, can be used as predictor variables.

Spatial correlation especially affects the statistical inference of
fitted models. When data are spatially collected, it is likely that points
close together have more similar values (or different) of variables
than points that are farther apart (Schabenberger & Gotway, 2005;
Ives & Zhu, 2006). Due to this, residuals of models being fit using OLS
would likely be autocorrelated. As pointed out by Kissling and Carl
(2008), the presence of spatial autocorrelation is problematic for
classical statistical tests because these methods assume independent-
ly distributed errors. Effective sample size decreases as the correlation
between observations increases (Schabenberger & Gotway, 2005).
Ignoring spatial correlation when selecting covariates for inclusion in
models can lead to the exclusion of relevant covariates in the model
(Hoeting et al., 2006). Models which incorporate spatial correlation
allow for the direct incorporation of the sampling design, using
model-based inference, in the modelling by accounting for the
hierarchical dependences between members of a population (Cressie
et al., 2009). Further references on applications mixing hierarchical
modelling and sampling design can be found in Hoeting (2009).
1 Height–diameter models are sometimes referred to as diameter–height models
(e.g., Schröder & Álvarez, 2001; Zhang & Shi, 2004). We prefer to be consistent with
mathematics, and reserve the left word in the couplet to identify the response variable,
as in Henry & Aarssen (1999).
Models that explicitly use spatial information are not common in
forest inventories. When a traditional regression model is fitted with
ordinary least squares (OLS), beyond the implicit spatial arrangement
of the data, spatial correlation plays no role in the modelling process
(Brunsdon et al., 1998). The advantages of taking spatial information
into account using ground-based measurements for modelling h-dbh
(Zhang & Shi, 2004), tree basal area growth-dbh (Zhang et al., 2004),
and tree crown area-dbh (Zhang & Gove, 2005; Zhang et al., 2005)
have been examined. In a laser scanning context, the works on
modelling dbh from LiDAR variables have not taken spatial informa-
tion into consideration. For example, Hyyppä et al. (2001) built a
model, using OLS that predict tree diameter dbh as a function of height
(lh) and tree crown diameter derived from LiDAR (lcd). They only
compared the forest inventory estimates of the mean height obtained
using that function versus the same parameter estimates using
ground-data, however, they did not report any statistics or compar-
ison of the fitted model. The same model was later fit by Schardt et al.
(2004) and García et al. (2007) with good results, but again not
offering greater details on the performance of themodel. Both Persson
et al. (2004) and Heurich et al. (2004) proposed slightly different
models using the same predictor variables. Persson et al. (2004)
reported the fit statistics of the model, and obtained errors of around
10% in predicting dbh. In recent studies, Heurich and Thoma (2008)
and Heurich (2008), both height and density-related laser variables
(e.g., height percentiles and total penetration rate. Næsset, 2002),
have been incorporated in models for predicting dbh.

Testing the specification of the spatial regression models, has not
been a straightforward endeavor. Brunsdon et al. (1999b) and Leung
et al. (2000) compared the use of OLS and geographically weighted
regression (GWR) using a parametric test, a F-test based on the
residual sum of squares of each model, and maximum likelihood-
based tests have been later proposed (e.g., Fotheringham et al., 2002)
too. However, as we will shall later argue, those tests are not valid
because they are suitable for parametric models, but not for non-
parametric ones such as GWR. Zhang and Shi (2004) and Zhang et al.
(2004) compared the use of OLS and GWR using the F-test, as
described in Leung et al. (2000). Later, comparisons of GWR were
extended not only to OLS but also to other models (e.g., Zhang & Gove,
2005; Zhang et al., 2005, 2008) such as linear mixed-effects models
(LME). Nevertheless, in the straight statistical sense of the model,
their LME models are not actually mixed-effects models, because no
random effects coefficients were included in their models. The
statistical model that they were fitting was a generalized linear
model with a non-null correlation structure. Brunsdon et al. (1999a)
compared GWR and a model with random coefficients (in GWR,
parameter coefficients are not assumed to be random, Brunsdon et al.,
1999a), which they fitted in a Bayesian framework.

Reasoning that statistical models that use spatial information may
offer both better prediction and a sounder statistical framework than
using statistical models that do not use spatial information, we
compare the performance of alternative models fitted using ordinary
least squares (OLS), generalized least squares with spatial correlation
structure (GLS), linear mixed-effects model (LME), and geographi-
cally weighted regression (GWR), for modelling the spatial variation
in tree diameter at breast height as a function of laser-derived
variables relationship in forest stands.

2. Methods

2.1. Data

2.1.1. Field data
The study area is located in themunicipality of Aurskog, situated in

the south-eastern Norway (59°80′ N, 11°55′ E, 172–388 m a.s.l.). The
sample plots, 36 of 1000 m2, were located in heterogeneous managed
forest conditions regarding the tree species composition, site qualities,



Table 1
Descriptive statistics for 1438 trees. dbh is diameter at breast height, h is total height, lh
and lcd are LiDAR derived height and crown diameter, respectively.

Statistic dbh (cm) h (m) lh (m) lcd (m)

Minimum 5.0 5.0 3.4 0.3
Maximum 49.5 35.8 29.6 4.2
Mean 19.2 15.2 15.1 1.5
Std. dev 7.8 4.7 4.8 0.7
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and development classes. The main three species were Norway
spruce [Picea abies (L.) Karst.], Scots pine (Pinus silvestris L.), and birch
(Betula sp.). At the plot level, the species composition by volume
ranged from 0–98% for spruce, 0–100% for pine, and 0–34% for birch.
The terrain across the study area is gentle compared to average
terrain conditions for productive forests in Norway. Nonetheless the
local topography varied significantly among plots. The plot center
coordinates (i.e., the x and y positions) were determined by
differential dual-frequency Global Positioning System (GPS) and
Global Navigation Satellite System (GLONASS) measurements, using
two Topcon dual-frequency receivers. On each plot, all trees with
dbh≥5 cm were callipered, and the stem locations were mapped
using a Sokkia SET5F total station. The tree species and vegetation
status were recorded for each measured tree. Total tree height (h)
was measured using a Vertex III hypsometer on reference trees se-
lected from across all plots.

2.1.2. LiDAR data
The LiDAR data were obtained under leaf-on canopy conditions on

June, 2006. Five non-overlapping strips were flown from an average
flying altitude of 800 m, using a PA31 Piper Navajo (LN-LAS) airplane.
The strips were E-W oriented, with an N-S spacing of ca. 8.7 km. Data
were acquired with an Optech ALTM 3100 system, operating with a
pulse repetition frequency of 100 kHz, a scanning frequency of
70 kHz, and using a half-angle of 5°. Laser data were processed by
the contractor Blom Geomatics A.S. After processing, the average
values of laser footprint diameter, along track point spacing and
across track point spacing were of ca. 0.2, 1.1 and 0.1 m, respectively.
The GPS/INS processing was performed using Applanix POSPac
software, and then planimetric coordinates (x and y) and ellipsoidal
heights of the first and last return echoes were obtained from the
navigation and laser data using Optech REALM tools. The 3D
adjustment and classification were performed using TerraScan and
TerraModel software from TerraSolid Ltd. The TIN model representing
the terrain surface was subtracted from the height values of all the
echoes recorded, to obtain the heights above the surface of the echoes,
with an accuracy of ±10 cm.

2.1.3. Individual tree detection
Only the first returns located inside buffers extending 10 m around

the plot borders were retained for the canopy height models (CHM)
creation. The average density of the first echoes within the buffers
after data processing was 7.3 pulses/m2. For each plot, a CHM was
obtained by gridding the irregularly spaced laser returns into a 0.35 m
regular grid. For single tree delineation, we followed the procedure
described by Hyyppä et al. (2001). The CHM was smoothed using the
low-pass Gaussian filter described by Hyyppä et al. (2001). Regional
maxima were identified in the smoothed CHMs by searching in 8-
connected neighborhoods for finding the pixels having higher values
than their external boundary neighbors. A marker-based watershed
algorithm was employed for individual tree crown delineation.
Individual tree variables (tree height, crown width, and stem
location) were obtained from the point clouds located inside the
delineated segments. The tree height and stem locationwere obtained
directly from the echo with the highest z-value within each segment,
which was considered to represent the top of the delineated tree. The
polygons representing the crownprojections of the delineated trees on
the ground were approximated using the convex hull of the (x, y)-
coordinates of the returns located within each segment. Thus, the
crownwidthswere estimated as the diameter of a circlewith the same
area as the crown polygons. Tree height and crown width are
underestimated with 0.6 m (Standard deviation, SD, of 0.6 m) and
0.4 m (SD 1.1 m), respectively, while the stem location error is 0.35 m.
In total, we have 1438 trees with both field-based and LiDAR-derived
variables (Table 1). Theminimumnumber of sample trees per plotwas
22, which is a reasonable number of trees for fitting models to predict
dbh with LiDAR-derived variables as covariates on a per plot basis.

2.2. Statistical models

Slight variations have been proposed for dbh-LiDAR derived
variable models. Hyyppä et al. (2001), Schardt et al. (2004), and
García et al. (2007) used the following mean function

E dbh½ � = β0 + β1lh + β2lcd; ð1Þ

where β0, β1, and β2 are the coefficients to be estimated, lh is the laser-
derived height, and lcd is the laser-derived tree crown diameter. In the
sequel, we shall use Eq. (1) as the mean function in various statistical
models. Our aim is to compare a variety of ways to incorporate spatial
information in statistical models for dbh. Rather than pool data from
all plots together, we fit the various models to data from each plot
separately, thereby avoiding having to account for variations in site
quality, aspect, slope, and other topographical features among plots.
We largely adopt the statistical notation of Schabenberger and
Gotway (2005) and Pinheiro and Bates (2000), where a response
and predictor variables y and xs have been recorded at spatial
locations si, ..., sn, i.e., specific geographic locations for each ith
observation with spatial coordinates si=[xi, yi]′, represented by y(s)
and X(s), respectively. The additive error term is represented by e(s).

2.2.1. Model 1
The first statistical model is as follows

dbh sið Þ = β0 + β1lh sið Þ + β2lcd sið Þ + e sið Þ;
e sið Þ∼N 0;σ2

� �
;

∑ e sið Þ; e sj
� �h i

= σ2In:

ð2Þ

where dbh(si), lh(si), and lcd(si) are dbh, lh, and lcd, recorded at spatial
location si, respectively. Errors of the model at location si are
represented by e(si), and they are assumed normally distributed
withmean 0 and variance σ2. β0, β1, and β2 are coefficient parameters
of the model.∑[e(si), e(sj)] is the covariancematrix of the errors, and
In is an identity matrix of size n (the sample size).

Eq. (2) can be more generally represented in matrix form as
follows,

y sð Þ = X sð Þβ + e sð Þ ð3Þ

where y(s) is the vector with the response variable recorded at
location s, X(s) is the matrix of predictor variables spatially recorded,
β is a vector with the coefficient parameters of the model, and e(s) is
the vector of random errors.

With ordinary least squares (OLS), the coefficient vector is
estimated by

β̂OLS = X sð Þ0X sð Þ� �−1X sð Þ0y sð Þ: ð4Þ

Model 1 does not incorporate any kind of spatial information. As
pointed out by Schabenberger and Gotway (2005, p. 316), model 1 is
a spatial regression model since the response variable y(s), and the
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predictor variables comprising X(s), are recorded at spatial locations.
However, the spatial information serves only to link y(s) and X(s);
there is nothing in the model that explicitly considers spatial pattern
or spatial relationships.

2.2.2. Model 2
The second model differs from Eq. (2) only in its specification of

the error covariance. For this model

∑ e sið Þ; e sj
� �h i

= σ2Ω; ð5Þ

where Ω is the correlation matrix, the elements of which specify the
spatial correlation between all pairs of trees on a plot. If the
correlation parameters in Ω were known, then the generalized least
squares (GLS) estimator

β̂GLS = X sð Þ0Ω−1X sð Þ
n o−1

X sð Þ0Ω−1y sð Þ ð6Þ

would be feasible. Usually the parameters in Ω must be estimated
from data or auxiliary information. Using Ω̂ as the estimated
correlation matrix (see below), the estimated GLS estimator of β is

β̂EGLS = X sð Þ0 Ω̂−1X sð Þg−1
X sð Þ0 Ω̂−1y sð Þ:

n
ð7Þ

As pointed out by Cressie (1993) and exemplified by Pinheiro and
Bates (2000), spatial correlation structures are generally represented
by their semivariogram, instead of their correlation function. We
derived Ω̂ for each plot after deciding the following: (a) the functional
form of the semivariogram, (b) the distance metric to be used, and
(c) whether the semivariogram would include a nugget effect.
Regarding (a), we assessed the following semivariogram functions;
exponential, Gaussian, linear, rational quadratic, and spherical. All of
them are fully described in Pinheiro and Bates (2000, p. 230–233), as
well as further details on them can be found in spatial statistics books
(Waller & Gotway, 2004; Schabenberger & Gotway, 2005; Diggle &
Ribeiro, 2007). Regarding (b), we assessed the following distance
metrics between the x and y coordinates among trees: Euclidean,
maximum, and Manhattan. Finally, regarding (c), we assessed the
effect of adding a nugget to the semivariogram function. We fit
model 2 and compared all the possible combinations of semivario-
gram function-distance metrics-nugget effect, and selected the best
model using the Akaike Information Criterion (AIC, Akaike, 1973). A
referee suggested that a Matern type of correlation function would
better capture a nugget effect, however, we did not use this function
in our study, but did add nugget effect.

2.2.3. Model 3
The third model adds random effects to the fixed effect coefficient

parameters:

dbh sið Þ = β0 + b0ið Þ + β1 + b1ið Þlh sið Þ + β2 + b2ið Þlcd sið Þ + e sið Þ;
bi = b0i;b1i;b2ið Þ0∼N 0;D ϕð Þð Þ;
e sið Þ∼N 0;σ2

� �
;

∑ e sið Þ;e sj
� �h i

= σ2Ω;

ð8Þ

whereD(ϕ) is a 3×3 random effects covariance matrix parameterized
by ϕ. The inclusion of a vector of random effects permits the model to
be individualized to each tree, while also permitting a pooling of all
the data when fitting the model. Importantly, the random individual
effects induce an intra-individual correlation structure that accounts
for the lack of independence among trees on the same plot. It is this
feature that has a great appeal for modelers of correlated data, even
though the induced correlation function may not be easily discernible
(Schabenberger & Gregoire, 1996). Further details on mixed-effects
models can be found in Pinheiro and Bates (2000) and Schabenberger
and Pierce (2002), as well as applications in a spatial context in
Schabenberger and Gotway (2005) and in Bivand et al. (2008).

In matrix notation, Eq. (8) may be written as

y sð Þ¼X sð ÞβþZ sð Þbþe sð Þ: ð9Þ

The flexibility permitted by amixedmodel of this sort comes at the
price of added complexity, both statistical and computational. In
practice it is often found that data do not support a random effect for
each fixed effect parameter, and also that when the correlation
structure is modelled by D(ϕ), it is often sufficient to specify Ω= In.

Customarily β in Eq. (9) is estimated by maximum likelihood or
restricted maximum likelihood. Followed by the best linear unbiased
predictors (“BLUP”, Robinson, 1991) of the random effects. We used
the nlme package (Pinheiro et al., 2008) implemented in R for fitting
LME models.

Having fitted a LME model, the mean response at x can be
estimated by xβ̂, where x is the vector of covariate values. An
individual observation can be predicted by adding the corresponding
BLUP of the random effect.

In model 3 we are not directly incorporating spatial information.
The random effects in Eq. (8), show that we are estimating an overall
(i.e., fixed) mean, and allowing for local deviations from this mean.
These deviations are random, in our case normally distributed.

2.2.4. Model 4
The fourth model allows the coefficients to vary by spatial location

dbh sið Þ = β0 sið Þ + β1 sið Þlh sið Þ + β2 sið Þlcd sið Þ + e sið Þ
e sið Þ∼Nð0;σ2Þ;
∑ e sið Þ; e sj

� �h i
= σ2In;

ð10Þ

where β0(si), β1(si), and β2(si) represent the coefficient parameters
for the ith observation, the other notation was previously defined.
Model 4 can be fitted using geographically weighted regression
(GWR), a non-parametric regression method that has been portrayed
by Fotheringham et al. (2002), Brunsdon et al. (1996, 1998) and
Fotheringham et al. (1998).

In GWR a vector of coefficient parameters is required for each
observation, that is to say, each observation has different coefficient
parameters, therefore, having a local feature. Sometimes, only a
portion of the coefficients of a GWR model can be local and the other
ones can remain global, which has been called “mixed-GWR”
(Fotheringham et al., 2002, p. 65–73). The estimated parameter
vector for each observation in GWR (Brunsdon et al., 1998) is obtained
using weighted least squares regression, as follows

β̂iGWR = X sð Þ′W sið Þ−1X sð Þ
n o−1

X sð Þ′W sið Þ−1y sð Þ; ð11Þ

whereW(si) is the diagonal weight matrix for the ith observation (i.e.,
tree). This matrix in general is defined as W(si)=diag{W(si, sj)},
where the scalar weight W(si, sj) for the j-th observation depends on
its proximity to the ith observation. A simple scheme of weighting
would be to exclude from the model fitting observations beyond a
distance b from the ith observation, which is termed the moving
window approach (Fotheringham et al., 2002).With this approach the
spatial weighting has the problem of discontinuity in the parameter
estimates (Brunsdon et al., 1998; Schabenberger & Gotway, 2005). An
alternative approach is to use a continuous spatial weighting function,
as in general represented by

W si; sj
� �

= f dist si ;sjð Þ; b
� �

; ð12Þ



3 A referee raised the issue about the appropriate number of degrees of freedom for
subject-specific inference in mixed models, which is still in debated among
statisticians (Bates, 2006). The conventional literature, as embodied by Pinheiro and
Bates (2000) is incorporated in LME, yet Hodges and Sargent (2001) and Vaida and
Blanchard (2005) make a case for an alternative assessment. Further, Bates (2006)
questions the appropriateness of the F distribution for inference altogether. The issues
are beyond the scope of this paper to address, however, and while appreciative of
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where f is a kernel function with bandwidth b. With Eq. (12) both the
kernel and the bandwidth need to be stipulated. We assessed a
Gaussian and a near-Gaussian kernels as spatial weighting functions
and selected the one that achieves a lower AIC2 of the GWR model.
The bandwidth is the searching radius around each observation and is
a key in GWR. The bandwidth can greatly affect the properties of the
β̂iGWR (Brunsdon et al., 1998). It governs the extent to which the
resulting local calibration results are smoothed (Fotheringham et al.,
2002). We used a fixed bandwidth of 6 m for all the plots, determined
based on the range of the empirical semivariogram (i.e., distance in
which the semivariogram reach the sill) of dbh per plot, and is
consistent with the studies by Zhang et al. (2004) and Pukkala (1989).
We used the spgwr package (Bivand & Yu, 2009) implemented in R for
fitting GWR models.

2.3. Comparing models

We first computed the studentized model residuals and plotted
them in a spatial fashion. Zhang and Gove (2005) called this type of
residuals “local Z-values”. These values would allow us to compare the
magnitudes of the residuals in space. Notice that we used the
studentized residuals definition given by Schabenberger and Pierce
(2002, Eq. (4.23)), and in order to compute this type of residual for
GWR, we used the L matrix of Leung et al. (2000, Eq. (16)) as the hat
matrix.

2.3.1. Goodness-of-fit
For each model (OLS, GLS, LME, and GWR), we computed the

following statistics in order to assess the goodness-of-fit of the tested
models: (a) the aggregated difference (AD) or mean residual,
computed as follows

AD =
1
n
∑
n

i
ri; ð13Þ

where ri = dbh sið Þ− d̂bh sið Þ; dbh sið Þ, is the observed tree diameter at
the ith location, d̂bh sið Þ is the predicted tree diameter at the si
location, and n is the sample size in the field plot being analyzed. For
the LME model, the prediction includes the BLUP of the random
effects. (b) the root mean square differences (RMSD) as follows,

RMSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i
r2i

s
; ð14Þ

and (c) the aggregated of the absolute value differences (AAD), as
follows

AADj =
1
n
∑
n

i
jrij: ð15Þ

We fitted and validated the models using the same observations
(on a per plot basis). We deliberately avoided the use of validation or
cross-validation, because withholding observations alters the pattern
of spatial correlation of the observations.We preferred to use the term
RMSD rather than RMSE (root mean squared error) following Stage &
Crookston (2007) and Hudak et al. (2008).

At this stage, we assess the models exclusively according to their
goodness-of-fit. We follow the methodology for selecting models
proposed by Salas (2002). The methodology is as follows. First,
partition the data into validation classes. We use the percentiles of the
variable lh in order to define five validation classes, with similar
number of observations in each class. Second, compute the statistics
detailed above (AD, RMSD, and AAD) within validation classes. Third,
compute the mean and standard deviation of among-class values of
2 We used the AIC of GWR as define in Fotheringham et al. (2002).
these statistics, therefore having an among-class mean and an among-
class standard deviation for AD, and so on). Fourth, assign ranking to
the among-class mean and among-class standard deviation of each
statistic. Ranking score 1 is assigned to the model with lowest among-
class mean (or closer to 0 for AD) and lowest among-class standard
deviation (which indicates more stable results across validation
classes). Fifth, add all these ranking scores (six in total, two scores by
three statistics) and sort the models according to this sum (no
weighting of statistics was considered), the model with the lowest
sumwould be rank as the best. Themethodology aims to rank best not
only the models with overall better precision and accuracy but also
with a consistent behavior across validation classes.

2.3.2. Statistical inference
Once we have maximized the log-likelihood function of a

parametric model, it is straightforward to compare models using
indices such as; Akaike Information Criterion (AIC, Akaike, 1973) or
the corrected AIC of Hurvich et al. (1998), among others. However,
this is possible only for parametric models, in our study; OLS, GLS, and
LME3. Statistical inference for GWR offers several challenges.
Although we could think of building a likelihood function for GWR
(e.g., Eq. (42) in Fotheringham et al., 2002), the actual way in which
the parameters are estimated does not involve any optimal solution
for this likelihood function, because all the coefficients are fitted
independently from one observation to another. The log-likelihood in
Fotheringham et al. (2002) for GWR permits an infinity of maxima.
Non-parametric statistical tests provide a more suitable framework
for assessment of GWR. Permutation tests, also called randomization
(Manly, 2006) or re-randomization (Welch, 1987) tests, offer a non-
parametric simple and straightforward technique for conducting
hypothesis testing among statistics of two groups. In order to conduct
the permutation tests, we first defined the statistics that would allow
us to compare the models, which we will denote as θ̂, as follows

θ̂ =
1
m

∑
m

j=1
RMSDaj−RMSDbj

� �
ð16Þ

where m is the total number of sample plots, RMSDaj and RMSDbj are
the root mean square differences (Eq. (14)) in % of models a and b,
respectively, for the j-th plot. We set model a to be the base one and
model b to be the new model, or the one with lower RMSD. Our
hypothesis under test is H0: μRMSDa

−μRMSDb
=0, vs. Ha: μRMSDa

NμRMSDb
.

The following step was to randomly assign (without replacement) m
values of RMSDs to model a and the rest to model b, and based on this
new sample (called “permutation sample” by Hesterberg et al., 2003),
we computed θ̂ (Eq. (16)) for the permutation sample. The next step is
to repeat this resampling many times, we used 10,000 permutations.
The distribution of the statistic from these resamples forms the
sampling distribution under the condition that H0 is true. Finally, we
computed the proportion of the distribution which exceeded the
difference observed between the two models (i.e., θ̂ using the original
sample), which is the estimate of the P-value for the one-sided test,
given the null hypothesis is true. We conducted this simple two-
sample permutation test procedure between every pair of models. We
also used other variants of non-parametric tests, but with all of them
we achieved the same conclusions.
having the matter brought to our attention by the referee, we have chosen to present
our results following currently accepted practice in this regard.



Fig. 2. Box plot of the root mean square differences (RMSD) for predicting tree diameter
in a field plot (i.e., each data point represents a RMSD for a plot) from the assessed
statistical models. GLS is generalized least squares with correlation structure, GWR is
geographically weighted regression, LME is linear mixed-effects, and OLS is ordinary
least squares.
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3. Results

Most of our plots showed a random spatial pattern of trees,
although a few exhibited a somewhat regular spatial pattern. We fit a
smooth curve to the empirical semivariogram in order to depict a
general trend of the autocorrelation of dbh, which shown spatial
correlation but only at small distances. Overall, the forest was fairly
homogenouswith respect to the spatial distribution of trees at the size
of our plots.

A rather simplified version of model 3 was sufficient for our data.
Although our base formulation of model 3 (Eq. (8)) allowed both
the intercept and the slopes coefficient parameters to have a
random-effect, we found better fit, as measured by AIC, when
having only the intercept random-effects. That is, the final model 3
used was dbh(si)=(β0+b0i)+β1lh(si)+β2lcd(si)+e(si). Further-
more, we did not find significant improvement by imposing a
marginal correlation, therefore, we set Ω= In in Eq. (8).

Compared to the OLS fit, the studentized residuals of the GWR
model changed both in magnitude and spatial distribution. The other
statistical models do not change the spatial pattern of the residuals,
which is in agreement with the findings of Zhang and Shi (2004) and
Zhang et al. (2004). However, LME produces much smaller studen-
tized residuals than the other models (Fig. 1c).

Both goodness-of-fit and permutation tests portrayed LME as the
best assessed model. There is a clear difference between the RMSD,
computed based on all the trees of each plot, of LME and the rest of the
models (Fig. 2). AD and AAD by validation classes point again to LME as
the model with a more consistent predictive performance across all
validation classes. In the same manner, the proportion of field plots
Fig. 1. Graph of studentizedmodel residuals (local Z-values) from the fourmodelling technique
black dots represent positive local Z-value, and the circles represent negative local Z-value. Bo
(i.e. cases)where eachmodel was assigned to be the best, according to
the proposed methodology, portrait to LME as the best in almost all
(95%) the field plots used in our study (Table 2). Permutation tests
s [OLS (a), GLS (b), LME (c), and GWR (d)] when predicting diameter in a sample plot. The
th types of circles are proportional to the absolute value of the studentized residuals.



Table 2
Percentage of the plots (i.e., cases) where each model was chosen as the best according
to its goodness-of-fit.

Model Position

1st 2nd 3rd 4rd

GLS 0.0 2.8 44.4 52.8
GWR 5.6 86.1 5.6 2.8
LME 94.4 5.6 0.0 0.0
OLS 0.0 5.6 50.0 44.4
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assessment of the RMSD between pairs of models showed significant
differences. Statistical significance comparisons of the models did
favor the ones with superior goodness-of-fit. There is indeed an
ordering of the models, not only considering the pure RMSD but also
Fig. 3. Permutation distribution of θ̂ (i.e., the mean difference between RMSDs on predic
permutation test. The vertical line shows the statistics for our dataset. 10,000 permutations
also printed.
its statistical significance, which is LME preferred to GWR preferred to
OLS (Fig. 3). Nevertheless, we did not find strong evidence against the
null hypothesis of no differences between the RMSDs of GLS and OLS.
This is expected because GLS really affects (or improves) the estimates
of the standard errors of the coefficient estimates, over the ones
obtained using OLS.
4. Discussions

The linear mean function (Eq. (1)) seems to be appropriate for
these data. We obtained a RMSD of 18% for our model fit by OLS.
Among other studies with models having the same predictor
variables: Persson et al. (2004) obtained a 10% error, computed over
all their sample trees, but with a much smaller sample (562 trees) and
a smaller diameter range too; and unfortunately neither Heurich et al.
(2004) nor Schardt et al. (2004) and García et al. (2007) reported their
dbh model errors. Heurich (2008), using models with more predictor
ting tree height from OLS, GLS, LME, and GWR models) using a simple two-sample
were conducted. The empirical one-sided P-value for the significance of the statistic is
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variables, obtained a RMSD of 19.9%4 for his dbh models in 936 trees.
Therefore we think our mean function performs reasonably well, and
is appropriate as a baseline model.

We obtained the best precision and accuracy in predictions using
LME. Prediction errors with LME are much lower (4%, Fig. 2) than
what can be achieved having a rather overparametrizedmodel such as
GWR (10%), where a full model is fitted for each observation.
Furthermore, the RMSDs of the LMEmodel were significantly different
from all other models considered. GLS models the spatial correlation
of the residuals, its prediction errors are not significantly different
from the one obtained from a simpler OLS model. However, standard
error estimates under OLS are biased, which raises doubts about the
correctness of statistical inference following OLS estimation. Finally,
LME also offers us a statistical pathway to further explore the
relationship being modelled.

The use of GWR in practical applications is unclear. Although
several studies have portrayed GWR as performing well and having a
series of advantages over othermodels (e.g., Zhang & Shi, 2004; Zhang
et al., 2004; Zhang & Gove, 2005; Zhang et al., 2005), few studies have
focused on how a GWR model could be used to predict Y for a new
observation which was not used in fitting the model. One way for
doing so involves to have the entire dataset used for fitting the model
(which is complicated in practice), and this prediction is done as in a
cross-validation setting (e.g., see the explanation of GWR prediction
in Leung et al., 2000, p. 27). Indeed, alternatives such as interpolating
in a map given the GWR predictions for known points or interpolating
the parameter estimates (which is the final aim of GWR), is possible,
but the statistical properties of interpolated predictions may be
difficult to discern. Furthermore, in forestry, plots may just be too far
separated (in space) to permit accurate interpolation of this sort.

5. Concluding remarks

The models we examined all shared a common mean function
which included laser height and laser crown diameter in a linear
fashion. The objective of this studywas to examine alternative ways to
include spatial information on tree location that would result in
improved model fit. It was intended to be an exploratory initial
investigation, rather than a comprehensive exercise to determine the
optimal, in some sense, mean function or covariance structure for the
data we had at our disposal. Of the models we considered, LME with
random intercepts was judged to perform better than the GWRmodel,
a model fitted by GLS with a spatial correlation error term, and an
aspatial model fitted by OLS. To our knowledge, this is the first study
assessing the utility of incorporating spatial relationships when
modelling field-observed response variables and LiDAR extracted
predictor variables. Our results show that a mixed-effects model
offers the best goodness-of-fit for modelling dbh from LiDAR-based
variables.
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