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Summary. With auxiliary information that is well correlated with the primary variable of interest, ratio estimation of
the finite population total may be much more efficient than alternative estimators that do not make use of the auxiliary
variate. The well-known properties of ratio estimators are perturbed when the auxiliary variate is measured with error. In
this contribution we examine the effect of measurement error in the auxiliary variate on the design-based statistical properties
of three common ratio estimators. We examine the case of systematic measurement error as well as measurement error that
varies according to a fixed distribution. Aside from presenting expressions for the bias and variance of these estimators when
they are contaminated with measurement error we provide numerical results based on a specific population. Under systematic
measurement error, the biasing effect is asymmetric around zero, and precision may be improved or degraded depending on
the magnitude of the error. Under variable measurement error, bias of the conventional ratio-of-means estimator increased
slightly with increasing error dispersion, but far less than the increased bias of the conventional mean-of-ratios estimator. In
similar fashion, the variance of the mean-of-ratios estimator incurs a greater loss of precision with increasing error dispersion
compared with the other estimators we examine. Overall, the ratio-of-means estimator appears to be remarkably resistant to
the effects of measurement error in the auxiliary variate.
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1. Introduction
In the field of survey sampling, auxiliary information is used
variously to guide the inclusion of population units into the
sample or to assist in the estimation of population descrip-
tive parameters, or both. Classic, recent, and contemporary
texts on sampling—for example, Cochran (1977), Särndal,
Swensson, and Wretman (1992), and Gregoire and Valentine
(2008)—all devote substantial portions of their expositions
to the use of auxiliary information to increase the precision
with which quantitative population characteristics may be es-
timated. To be worthwhile for these purposes, the auxiliary
variate, say x, must be well correlated, usually positively cor-
related, with the attribute of principal interest, say y, and
it must be comparatively inexpensive to obtain, or else the
investment in time and energy to obtain information on the
auxiliary variate could be better spent obtaining a larger sam-
ple of the variable of interest alone.

Oftentimes the secondary importance of the auxiliary vari-
ate, x, may result in a more sizeable error in its measure-
ment compared to that of y. For example, x may result from
remotely sensed, satellite data that have been processed by
a digital classifier, and hence subject to classification error.
Or, x may be an ocular or other type of subjective assess-
ment of a size characteristic that is associated with y. Air-
borne or space Light Detection and Ranging (LiDAR) mea-
surements of forest canopy height may change due to degra-
dation in laser system performance over time, due to location

error between airborne laser profiles, or due to technological
improvements that necessitate the use of two different laser
systems for data collection flown years apart. Yet another
source of error when x is measured in the field or forest is
nonnegligible rounding error. These few examples are hardly
exhaustive, and they are provided merely to help motivate
the problem we address: because of the nature of auxiliary
information and how it is used in the sample design and
estimation, it is apt to include nonnegligible measurement
error.

The purpose of this article is to explore the effect of mea-
surement error (ME) in x on the design-based statistical prop-
erties of commonly employed ratio estimators of τ y , the to-
tal amount of the variate of interest, y, in the population.
We know of no prior investigation of this issue, notwith-
standing considerable recent attention devoted to measure-
ment error in modeling (e.g., Fuller, 1987; Carroll, 1998) and
its effect on model-based inference. On one level it is evi-
dent that although the information in x about y is degraded
when measurement error is included, the well-known proper-
ties of ratio estimators persist. However, on a different level we
think that there is value in scrutinizing more specific effects
of measurement error. For example, whether it affects bias
more egregiously than variance; whether the relative impact
changes with sample size; and whether the effects are symmet-
ric around zero. The results of this article shed light on such
effects.
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2. Ratio Estimation of Population
Descriptive Parameters

2.1 Population Descriptive Parameters
Similar to Breidt et al. (2007), we denote the ordered labels
for a finite population of discrete units by P = {1, 2, . . . N},
indexed by k in the following. Corresponding to each unit is a
nonnegative value of some measurable characteristic, yk , ∀ k ∈
P; likewise, there is a quantitative, auxiliary characteristic,
xk , also nonnegative. Our interest is focused on the estimation
of the aggregate value of y in P, namely, τy =

∑
P yk on the

basis of a sample of n units selected without replacement by
simple random sampling (SRSwoR). We denote the mean y-
value per element in P by µy = τ y /N .

2.2 Ratio Estimation in the Absence of Measurement
Error in x

We first summarize the design-based bias and variance of
three ratio estimators of interest when the auxiliary variate
is free of measurement error. In the succeeding section, we
examine how these properties are altered by measurement
error.

2.2.1 Ratio-of-means estimator. Letting y and x denote
sample mean values, the aptly named “ratio-of-means”
estimator is

τ̂y 1 = R̂τx , (1)

where τx =
∑

P xk . In (1), R̂ = y/x is an estimator of R =
τ y /τ x = µy /µx .

A Taylor-series expansion of τ̂y 1 truncated after two terms
leads to an expression of its design bias as an estimator of τ y

as

B [ τ̂y 1 : τy ] ≈
( 1

n
− 1

N

)(
γ2

x − ργx γy

)
τy , (2)

where ρ is the linear correlation coefficient and γx and γ y

are the coefficients of variation of x and y, respectively, in
the population. This approximation to the bias of τ̂y 1 may
be deduced inter alia, from Cochran (1977, Section 6.8, Eq.
6.34).

The usual approximation of the variance of τ̂y 1 following
SRSwoR is (cf. Gregoire and Valentine, 2008, Section 6.3, Eq.
6.16)

V [ τ̂y 1 ] = N 2
( 1

n
− 1

N

)
σ2

rm , (3)

where σ2
rm = 1

N −1

∑
P (yk − Rxk )2.

2.2.2 Mean-of-ratios estimator. In addition to τ̂y 1 we con-
sider the “mean-of-ratios” estimator,

τ̂y 2 = rτx , (4)

where r is the average ratio rk = yk /xk of the n units in
the sample. Its expected value under the SRSwoR design is
E[ τ̂y 2 ] = µr τx , where µr is the population average ratio, i.e.,
µr =

∑
P rk /N .

The design bias of τ̂y 2 as an estimator of τ y may be deduced
straightforwardly as

B [τ̂y 2 : τy ] =
∑

P

yk

(µx

xk
− 1

)
.

Evidently its bias is impervious to the size of the sample
actually selected. Indeed, even when n = N, τ̂y 2 ̸= τy , and ac-
cording to Sukhatme and Sukhatme (1970, p. 160), this in-
consistency has limited its use. The variance of τ̂y 2 is

V [ τ̂y 2 ] = τ 2
x

( 1
n
− 1

N

)
σ2

m r ,

where σ2
m r = 1

N −1

∑
P(rk − µr )2, as shown in equation (7) of

Goodman and Hartley (1958).
2.2.3 Unbiased ratio-type estimator. Hartley and Ross

(1954) introduced the following design-unbiased estimator of
τ y :

τ̂y 3 = τ̂y 2 +
(N − 1

N

)( n

n − 1

)
(τ̂y π − r τ̂xπ ) ,

in which τ̂y π and τ̂xπ are the Horvitz–Thompson estimators
of τ y and τ x , respectively. Unbiasedness of τ̂y 3 is obtained
because E[( N −1

N )( n
n−1 )(τ̂y π − r τ̂xπ )] = τy − µr τx .

Goodman and Hartley (1958, Eq. 18) derived the variance
of τ̂y 3. In our notation and after adjusting to a finite popula-
tion context,

V [τ̂y 3] = N 2
( 1

n
− 1

N

)(
σ2

y + µ2
r σ

2
x − 2µr C(x, y)

+
1

n − 1
(
σ2

r σ
2
x + C(r, x)2

))
,

where C(x, y) is the population covariance: C(x, y) =
∑

P
(xk − µx )(yk − µy )/N , and C(r, x) is analogously defined.

2.3 Ratio Estimation in the Presence of Additive
Measurement Error in x

We assume that xk cannot be measured without error, con-
sequently in its stead we measure

x∗
k = xk + δk ,

where δk is the measurement error. In keeping with precepts
of design-based inference, we assume further that δk is fixed
in the sense that repeated measurements of the kth unit of
P would result in the same value x∗

k . Fixed error is reason-
able, for example, in the case where a measure of length is
rounded to the nearest centimeter: We presume that repeated
measurements of the same length would result in an identi-
cal measurement, the error of which would be unknown but
have constant magnitude among the repeated measurements.
In a remote sensing context LiDAR readings of height will
contain error, the magnitude of which will vary among pix-
els, yet for a given scene it will be fixed for each pixel in the
scene. As a further example, measurement error of a fixed
magnitude may result from faulty instrumentation, thereby
leading to the same magnitude of measurement error among
all elements of P. Cochran (1977, Section 13.9) terms the lat-
ter “constant bias over all units,” yet he discusses the case
where such biased measurement only affects y, not x.

As explained in the next section, we shall consider both the
case where the magnitude of δk may vary among units, and
when it is constant for all units.

In the sequel, the population and sample mean measure-
ment errors are denoted as µδ and δ, respectively. In an
obvious extension to the notation introduced above, let the
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error-contaminated total, mean, and coefficient of variation of
x∗ in P be denoted by τ ∗

x , µ∗
x , and γ∗

x , respectively. In similar
fashion, the sample mean of x∗ is x ∗.

The analog to τ̂y 1 with the error-contaminated auxiliary
variate is

τ̂ ∗
y 1 = R̂∗τ ∗

x = τ̂y 1

(
1 +

µδ

µx

)/(
1 +

δ

x

)
,

where R̂∗ = y/x ∗ = R̂/(1 + δ
x ). The bias of τ̂ ∗

y 1 is analogous
to equation (2):

B
[
τ̂ ∗

y 1 : τy

]
≈

( 1
n
− 1

N

)(
γ∗2

x − ρ∗γ∗
xγy

)
τy . (5)

The change in magnitude of bias, which arises from the
measurement error, may be expressed usefully by the ratio of
equation (5) to that of equation (2), namely,

B
[
τ̂ ∗

y 1 : τy

]

B [ τ̂y 1 : τy ]
=

γ∗
x

γx

(
γ∗

x − ρ∗γy

γx − ργy

)

=
(

µy σ∗2
x − C(x∗, y)(µx + µδ )
µy σ2

x − C(x, y)µx

)/(
1 +

µδ

µx

)2

.

(6)

The utility of this expression is that it is independent of sam-
ple size, n. It shows, also, that even when the population mean
error, µδ , is identically zero, the bias of τ̂ ∗

y 1 is affected by the
variability of measurement error.

From equation (3) we deduce that the approximate variance
of τ̂ ∗

y 1 is given by

V
[
τ̂ ∗

y 1

]
= N 2

( 1
n
− 1

N

)
σ∗2

rm , (7)

where

σ∗2
rm =

1
N − 1

∑

P

(yk − R∗x∗
k )2

=
1

N − 1

∑

P

(
yk − R (xk + δk )

/(
1 +

µδ

µx

))2

. (8)

With measurement error in the auxiliary variate, the
“mean-of-ratios” estimator in equation (4) becomes

τ̂ ∗
y 2 = r ∗τ ∗

x =
N

n

∑

k∈S

yk

(µx + µδ

xk + δk

)
,

where r ∗ is the average ratio r∗k = yk /x∗
k of the n units in the

sample. Therefore, E
[
τ̂ ∗

y 2

]
= µ∗

r τ
∗
x , and

B
[
τ̂ ∗

y 2 : τy

]
= µ∗

r τ
∗
x − τy =

∑

P

yk

(µx + µδ

xk + δk
− 1

)
, (9)

where µ∗
r = N−1

∑
P yk /x∗

k .
The ratio of the bias of τ̂ ∗

y 2 to τ̂y 2 is

B
[
τ̂ ∗

y 2 : τy

]

B [τ̂y 2 : τy ]
=

∑

P

yk

(µx + µδ

xk + δk
− 1

)

∑

P

yk

(µx

xk
− 1

) . (10)

The variance of τ̂ ∗
y 2 is

V
[
τ̂ ∗

y 2

]
= (τx + Nµδ )

2
( 1

n
− 1

N

)
σ∗2

m r , (11)

where σ∗2
m r = 1

N −1

∑
P( y k

x ∗
k
− µ∗

r )2.
The error-contaminated version of τ̂y 3 is

τ̂ ∗
y 3 = τ̂ ∗

y 2 +
(N − 1

N

)( n

n − 1

)
(τ̂y π − r ∗ τ̂ ∗

xπ )

=
N

n

∑

k∈S

yk

(µx + µδ

xk + δk

)

+
(N − 1

N

)( n

n − 1

)
(τ̂y π − r ∗ τ̂ ∗

xπ ) ,

where r ∗ is the average sample ratio r∗k , as mentioned ear-
lier. With SRSwoR, τ̂ ∗

xπ = N (x + δ ). Because E[( N −1
N )( n

n−1 )
(τ̂y π − r ∗ τ̂ ∗

xπ )] = τy − µ∗
r τ

∗
x , the design unbiasedness of τ̂ ∗

y 3 is
preserved despite measurement error in the xk ’s.

The variance of τ̂ ∗
y 3 is

V
[
τ̂ ∗

y 3

]
= N 2

( 1
n
− 1

N

)(
σ2

y + µ∗2
r σ2

x ∗ − 2µ∗
r C(x∗, y)

+
1

n − 1
(
σ2

r ∗σ2
x ∗ + C(r∗, x∗)2

))
, (12)

where C(x∗, y) =
∑

P (x∗
k − µ∗

x ) (yk − µy ) /N , and C(r∗, y) =∑
P (r∗k − µ∗

r ) (yk − µy ) /N .

3. Empirical Study
The complicated dependence of the bias and variance of
τ̂ ∗

y 1, τ̂
∗

y 2, and τ̂ ∗
y 3 on the mean and variance of the error-

contaminated auxiliary variate prevents a general analytical
comparison of the relative performance of these estimators. To
circumvent this difficulty we examined the statistical proper-
ties of these estimators when sampling from a specific popu-
lation, which we describe below.

The empirical portion of this study was undertaken to pro-
vide an indication of the magnitude of the effects of additive
measurement error in xk on the estimators presented above,
and to examine how the magnitude of these effects change
with the mean and variance of the measurement error pro-
cess itself. We imposed various types of measurement error
on data collected by Candy (1999). In that study, conducted
in Tasmania, Australia, the length, width, and area of Euca-
lyptus nitens leaves were measured. We computed the product
of leaf length and width, and used this erstwhile “rectangu-
lar” area as the auxiliary variate for the estimation of total
leaf area, τ y , of the population. Descriptive parameters for
leaf area and for the corresponding rectangular area are dis-
played in Table 1. The marginal distribution of leaf area and
the relation between leaf area and rectangular area are shown
in Figure 1.

4. Measurement Error Processes
We examined the effect of measurement error in the auxil-
iary variate in the case where the magnitude of the error
was constant for all units in the population. In addition,
we looked at its effect when the magnitude of measurement
error varied among population units in accordance with a
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Table 1
Descriptive parameters of the Eucalyptus nitens leaves

population (N = 501)

Variable

Descriptive Leaf Length ×
parameter area (cm2) width (cm2)

Minimum 28.1 55.1
Maximum 146.6 222.2
Mean (µ) 71.0 99.8
Standard deviation (σ) 21.1 31.5
Total (τ ) 35, 575.2 49, 988.1
Coefficient of variation (γ) 29.7% 31.6%
Coefficient of skewness 0.6 0.9
Kurtosis 0.2 0.7
Correlation coefficient (ρ) 0.96
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Figure 1. Eucalyptus nitens leaves population: (a) histogram
of leaf areas and (b) relationship between leaf area and length
× width.

uniform distribution, a Gaussian distribution, and a beta
distribution.

The case of constant measurement error corresponds to the
situation, mentioned above, where instrumentation yields a
reading that systematically is larger than it should be, or
else is systematically smaller. We examined the effect of such
systematic error in the measurement of xk for the estimation
of total E. nitens leaf area, τ y , when its magnitude was δ =
−25 cm2 for each xk , i.e., δk = −25 cm2, ∀k. We did likewise
when δk = 25 cm2, ∀k, and then at a succession of values on
a fine grid within this range.

Uniform measurement error mimics the process of rounding
in the recording of xk . In the empirical study, we generated
a uniform random number error, uk , for each xk from a U[−
25, 25] distribution. We then applied a multiplicative scaling
factor, f U , to each random number, so that the scaled uni-
formly distributed measurement error was δk = fU uk . We did
this for a minimum value of f U = 0, a maximum value of
f U = 1, and at a succession of values on a fine grid within
this range. The case where f U = 0 evidently corresponds to
the absence of measurement error.

Gaussian measurement error may result from the agglom-
eration of errors from independent sources. Example sources
may include change in ambient temperature, personnel fa-
tigue, altered battery, or signal strength, background noise
level, glare, mental distraction, to name a few. We generated
δk from a N (0, σ2

δ ) distribution, where σδ = f N σx , and
σx is the standard deviation of the auxiliary variate in the
population of E. nitens leaves.

The multiplicative scaling factor, f N , varied from a mini-
mum of 0.0, a maximum of 0.30, and intermediate values on
a fine grid within this range. Here, too, a value of fN = 0
corresponds to the absence of measurement error.

We also wished to examine the effect of skew. For this pur-
pose, we generated δk proportional to a beta-distributed ran-
dom variate, bk ∼ β(a, b), with a = 2 and b = 10. The propor-
tionality factor was set to f β = 25p/max (bk ), where p is a
proportion that was varied from a minimum of p = 0, a max-
imum of p = 1, and intermediate values on a fine grid within
this range. The case where p = 0 corresponds to the absence
of measurement error. For each set of scaled, beta-distributed
measurement errors, δk , we deducted the median value from
each so that the skewed distribution of measurement errors
was centered around zero, as in the uniform and Gaussian
cases and the constant measurement error case introduced
above.

5. Effect of Constant Measurement Error
In this section, we examine the effect on design-based bias,
standard error (SE), and root mean square error (RMSE)
caused by the insinuation of a systematic (constant) mea-
surement error in the auxiliary variate. That is, δk = µδ , ∀k.

5.1 Bias Ratio Trend with Change in Average Error
of Measurement

The bias ratio for τ̂ ∗
y 1, equation (6), and for τ̂ ∗

y 2, (10), are
displayed in Figure 2a for a range of values of µδ arrayed
as a proportion of µx . Horizontal reference lines have been
superimposed at values of −1, 0, and 1 on the vertical axis, as
well as a vertical reference line at µδ /µx = 0. As mentioned
earlier, these ratios do not depend on sample size, n.

As seen in this graphic, relative to the bias of τ̂y 1 and τ̂y 2,
the bias of τ̂ ∗

y 1 and τ̂ ∗
y 2 when µδ < 0 exceeds that of the

corresponding estimator in the absence of measurement er-
ror. Conversely, positive measurement error results in reduced
bias. However, with sufficiently large positive µδ , the bias of
each estimator becomes negative and larger in absolute mag-
nitude than the bias of the corresponding error-free estimator.
Nonetheless, at least for this E. nitens leaf population, there
is a range, 0 < µδ ! 0.2µx , of constant measurement error
where the bias is reduced over what it is in the absence of
measurement error.

Figure 2b shows the bias of τ̂ ∗
y 1 and τ̂ ∗

y 2, respectively, ex-
pressed as a percentage of τ y . This display serves to empha-
size the comparative imperviousness of the bias in τ̂y 1 to this
type of measurement error. The results depicted here were
computed with equations (5) and (9), presuming a sample of
size n = 7, which is roughly a 1% sample of the 501 element
E. nitens leaf population. For larger sample sizes, the bias
of τ̂ ∗

y 1 will lay closer to the zero reference line, whereas the
percentage bias trend line for τ̂ ∗

y 2 would be unchanged.
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Figure 2. Properties of estimators under systematic measurement error in the x variate. For τ̂ ∗
y 1 (solid line) and τ̂ ∗

y 2 (dot–dash
line), the ratio of bias with:without measurement error in (a) and bias as a percentage of τ y in (b). For τ̂ ∗

y 1, τ̂
∗

y 2, and τ̂ ∗
y 3 (dashed

line), the ratio of standard error with:without measurement error in (c) and standard error as a percentage of τ y in (d); ratio
of RMSE with:without measurement error in (e), and RMSE percentage as a percentage of τ y in (f). Results for τ̂ ∗

y 3 are based
on samples of size n = 7.

5.2 Standard Error Trend with Change in Average Error
of Measurement

The ratio of the standard error of τ̂ ∗
y 1 to τ̂y 1 is displayed in

Figure 2c with similar traces for the standard error ratios of
τ̂ ∗

y 2 and τ̂ ∗
y 3 superimposed. The standard error ratio of τ̂ ∗

y 3,
only, depends on n, and results in this figure are shown for
n = 7. When µδ < 0, the standard errors of all three estimators

are increased, and when µδ > 0, the precision of all three is
improved. Although not easily discernible in Figure 2c, when
µδ is within the region of ±5% of µx , the standard error τ̂ ∗

y 2
is less affected than that of τ̂ ∗

y 1, whereas the standard error
τ̂ ∗

y 3 is more affected. This is evident, also, when the standard
errors of the estimators are expressed as a percentage of τy

as in Figure 2d. When µδ is within the region of ±5% of µx ,
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the increase or decrease in standard error is a tiny fraction of
a percentage point.

By differentiating equation (8) with respect to µδ , we de-
duce that the standard error of τ̂ ∗

y 1 is minimized at the value
of µδ satisfying the relation

ζµδ = µy − ζµx ,

where ζ = C(x, y)/σ2
x is the linear regression coefficient of y

on x.

5.3 RMSE Trend with Change in Average Error
of Measurement

A similar set of graphs are shown in Figure 2e, which portrays
the RMSE ratios for τ̂ ∗

y 1, τ̂
∗

y 2, and τ̂ ∗
y 3, and Figure 2f, which

shows the change in RMSE, expressed as a percentage of τ y ,
with increasing µδ . As before, only the results pertaining to
τ̂ ∗

y 3 depend on the size of the sample. In both figures it is
apparent that RMSE is affected much more when µδ < 0
than when µδ > 0.

When judged by RMSE, τ̂ ∗
y 2 is most affected when µδ < 0

and τ̂ ∗
y 1 is least affected. When expressed as a percentage of

τ y , as in Figure 2f, τ̂ ∗
y 1 is superior regardless of the sign of µδ .

All three estimators have smaller RMSE under small positive
µδ than they do in the absence of measurement error.

6. Effect of Variable Measurement Error
The three distributions—uniform, Gaussian, and beta—of
measurement error that we investigated all were centered at
zero. By using different scaling factors, we were able to vary
the spread of the error distributions in a systematic fashion.
In the graphical results discussed in this section, we portray
the change in bias, standard error, and RMSE of the error-
contaminated estimators of τ y as a function of the standard
deviation, σδ , of the error distribution expressed as a propor-
tion of the standard deviation, σx , of the auxiliary variate.

The upper panels of Figure 3 display the ratio of the bias
of τ̂ ∗

y 1 to τ̂y 1 as σδ increases, and the similar ratio of the
bias of τ̂ ∗

y 2 to τ̂y 2 is superimposed. From left to right, pan-
els (a), (b), and (c) show the bias ratio, respectively, for uni-
formly, Gaussian-, and beta-distributed measurement error.
In all three cases, the bias of both τ̂ ∗

y 1 and τ̂ ∗
y 2 is increased

compared to the bias in the absence of measurement error,
becoming greater with increasing dispersion of the error dis-
tribution. Under all three error processes τ̂ ∗

y 2 is more sensitive
to measurement error than τ̂ ∗

y 1, in the sense that its bias is in-
creased more. For any specified level of σδ , the bias ratio was
greatest when measurement errors were Gaussian distributed,
and least when beta distributed.

The inserts in the upper left corner of these panels show
the percentage bias of τ̂ ∗

y 1 and τ̂ ∗
y 2 when n = 7. Percentage

bias increases in a smooth fashion with increasing σδ . Com-
pared to τ̂ ∗

y 2, the bias of τ̂ ∗
y 1 is rather insensitive to increasing

measurement error dispersion. At any specified level of σδ ,
bias in τ̂ ∗

y 1 and τ̂ ∗
y 2 was greatest when measurement errors

were Gaussian distributed, and least when beta distributed,
although the differences between them are slight. Arguably,
the salient message carried by these graphs is that variable
measurement error increases the bias of τ̂y 1 and τ̂y 2, and that
the increase in bias is directly related to the dispersion of the
error distribution.

Panels (a), (b), and (c) in the middle row of graphs in
Figure 3 show the ratio of standard error with and without
measurement error in the auxiliary variate. It is apparent that
the standard error of estimation, like bias, increases directly
with increasing error dispersion, and that τ̂ ∗

y 1 and τ̂ ∗
y 3 are less

sensitive than τ̂ ∗
y 2 in this regard. As with bias, the Gaussian-

distributed errors exert more of an effect on the standard error
of estimation than uniformly distributed errors, whereas the
beta-distributed errors had the smallest effect. This result is
evident when examining the standard error of estimation as a
percentage of τ y , shown in the upper left inserts of the middle
row of graphs.

When performance is judged by RMSE, τ̂ ∗
y 1 performs best

under all three variable measurement error processes, as
shown in panels (a), (b), and (c) of the lowest row of graphs
of Figure 3.

7. Simulation Results
For the error-contaminated versions of the E. nitens leaf popu-
lation described in Section 3 we checked the results presented
in Figures 2 and 3 by means of a simulation study in which we
drew 30,000 samples from the population of E. nitens leaves
contaminated by each of the measurement error processes de-
scribed in Section 4. In all cases the discrepancy between the
results displayed in Figures 2 and 3 and the simulation results
agreed to within a fraction of a percentage point. Moreover,
when the simulation was repeated with 100,000 samples, the
results changed minimally. Sampling was conducted with sam-
ples of size 7, 15, and 37. Because of the close similarity of
results, we report results for samples of size 7 only.

Aside from serving this confirmatory purpose, the simula-
tion enabled us to evaluate how well the approximations put
forth in equations (7), (11), and (12) portray the variance
of τ̂ ∗

y 1, τ̂
∗

y 2, and τ̂ ∗
y 3, respectively, under the different types of

measurement error processes we examined. Cochran (1977,
p. 162–163) considered their adequacy in the absence of mea-
surement error.

Results for the case of constant measurement error in the
auxiliary variate are displayed in Table 2a. In the absence of
measurement error, i.e., when µδ = 0, the standard errors
computed from these variance approximations all are within
1% of the Monte Carlo standard errors for all three estima-
tors of τ y and for the three sample sizes that we examined.
When µδ > 0, the computed standard error of τ̂ ∗

y 1 appears to
track the Monte Carlo standard error as well as it does when
µδ = 0: there is no apparent pattern of increasing or decreas-
ing deviation from the Monte Carlo error. The same can be
said for the deviation of the standard error of τ̂ ∗

y 2 and τ̂ ∗
y 3 from

the empirical error observed in the simulation study.
When µδ < 0, these approximations to the standard error

of estimation perform less well, especially for the largest n.
However, only in one instance did the deviation from the em-
pirical standard error exceed 2% in absolute magnitude, and
that case occurred only when µδ was −25% of µx . Overall,
the variance approximations given for all three estimators lead
to trustworthy standard errors of estimation under constant
measurement error in the auxiliary variate.

Results for variable measurement error are tabulated in
Table 2b. Recall that we examined the effects of uniform,
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Figure 3. Bias (first panel row), standard error (second panel row), and RMSE (third panel row) of τ̂ ∗
y 1 (solid line), τ̂ ∗

y 2
(dot–dash line), and τ̂ ∗

y 3 (dashed line) relative to that of τ̂y 1, τ̂y 2, and τ̂y 3, respectively, with uniform (a), Gaussian (b), and
beta (c) distributed measurement error in the auxiliary variate. The inner plots represent bias (first panel row), standard
error (second panel row), and RMSE (third panel row) expressed as a percentage of τ y . The horizontal axis of the inserts
span the range 0 ! σδ /σx ! 0.30. Results for τ̂ ∗

y 3 are based on samples of size n = 7.

Gaussian, and beta-distributed measurement error, where, in
each case, the distribution was centered at zero, i.e., µδ = 0.

Looking first at the results that pertain to uniformly dis-
tributed measurement error, there is an apparent pattern of
understatement of actual standard error, which increases in
magnitude with increasing σδ . When σδ = 0.3σx , the com-
puted standard errors of τ̂ ∗

y 1, τ̂ ∗
y 2, and τ̂ ∗

y 3 are about 2–4%
smaller than what was observed among the 30,000 estimates
observed in the simulation study.

In contrast, when δ ∼ N [0, σ2
δ ], the computed approxima-

tions to the standard errors of τ̂ ∗
y 2 and τ̂ ∗

y 3 tend to overstate
the empirically observed standard error, with the overstate-
ment increasing moderately with increasing σδ . This trend
was apparent for τ̂ ∗

y 1 at the large sample sizes (n = 15 & 37)
that we examined.

Results when δ is distributed as a beta random variable
mimic the Gaussian results, but the overstatement is greater
for a similar level of σδ . Whereas overstatement ranged
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Table 2
Percentage deviation of the standard error approximation of τ̂ ∗

y 1, τ̂ ∗
y 2, and τ̂ ∗

y 3 from the Monte Carlo standard error. In part (a),
results are shown when the measurement error in the auxiliary variate is a constant magnitude given by µδ ; in part (b), results
are shown when the measurement error in the auxiliary variate varies according to uniform, Gaussian, and β distributions with

dispersion indicated by σδ . Simulation results are based on 30, 000 samples of size n = 7.

(a) µδ /µx

Distribution Estimator −0.25 −0.20 −0.15 −0.10 −0.05 0 0.05 0.10 0.15 0.20 0.25

Constant τ̂ ∗
y 1 −3.05 −1.90 −0.94 −0.19 0.34 0.62 0.67 0.55 0.36 0.15 −0.03

τ̂ ∗
y 2 −0.74 −0.61 −0.43 −0.20 0.05 0.28 0.45 0.54 0.56 0.53 0.48

τ̂ ∗
y 3 −0.85 −0.76 −0.63 −0.46 −0.24 −0.02 0.19 0.34 0.42 0.43 0.41

(b) σδ /σx

0 0.03 0.07 0.10 0.13 0.17 0.20 0.23 0.27 0.30
Uniform

τ̂ ∗
y 1 0.92 0.83 0.49 −0.03 −0.64 −1.89 −2.47 −3.02 −3.54 −4.04

τ̂ ∗
y 2 0.44 1.01 1.19 1.03 0.64 −0.43 −0.99 −1.55 −2.10 −2.65

τ̂ ∗
y 3 0.29 0.26 0.13 −0.08 −0.34 −0.92 −1.21 −1.48 −1.75 −2.02

Gaussian
τ̂ ∗

y 1 0.49 0.47 0.47 0.46 0.46 0.45 0.43 0.40 0.35 0.29
τ̂ ∗

y 2 −0.31 0.03 0.36 0.67 0.96 1.23 1.50 1.77 2.09 2.47
τ̂ ∗

y 3 −0.05 0.02 0.17 0.39 0.66 0.95 1.25 1.55 1.83 2.09
Beta

τ̂ ∗
y 1 0.76 1.22 1.60 1.88 2.07 2.21 2.20 2.16 2.09 2.00

τ̂ ∗
y 2 0.26 0.83 1.47 2.07 2.57 3.21 3.35 3.41 3.40 3.32

τ̂ ∗
y 3 0.21 0.75 1.28 1.76 2.18 2.77 2.97 3.10 3.19 3.25

generally from 0–2% when σδ = 0.3σx under Gaussian mea-
surement error, it ranged from 2–3% under beta measurement
error.

8. Discussion
This has been a multifaceted study, the major conclusions of
which are enumerated below. Although it is impossible to gen-
eralize the results of a single empirical study, our results at
the very least provide insight into how the effects of measure-
ment error change with increasing µδ in the case of constant
measurement error and on increasing measurement error dis-
persion in the case of variable measurement error. The ana-
lytical expressions for the bias and variance of τ̂ ∗

y 1, τ̂
∗

y 2, and
τ̂ ∗

y 3 have been presented in Section 2.3 and confirmed by the
simulation study.

(i) The unbiasedness of τ̂y 3 is preserved even when mea-
surement error contaminates the auxiliary variate.
As a referee pointed out, this estimator is unbiased
without regard to the auxiliary variate and how or
whether it may be contaminated.

(ii) Constant measurement error in the auxiliary variate
can occur when the measuring instrument is faulty
in a consistent manner. The effects of such errors
are not symmetric: when µδ < 0, its effect on the
bias, standard errors, and mean square errors of τ̂ ∗

y 1
and τ̂ ∗

y 2 differ from its effect when µδ > 0. The
same can be said regarding its effect on the stan-

dard error of τ̂ ∗
y 3. When µδ > 0, the bias and stan-

dard error are both reduced from their values in the
absence of measurement error. It will be useful to
determine whether this result holds for other study
populations. Over a broad range of µδ ̸= 0, τ̂ ∗

y 1 has
smallest RMSE.

(iii) Variable measurement error in the auxiliary variate
can occur for any of a number of reasons, e.g., round-
ing error in the measurement process. In the face of
variable measurement error, the bias of τ̂ ∗

y 1 increases
less than that of τ̂ ∗

y 2. The RMSEs of all three estima-
tors we examined increases directly with increasing
σδ , a result which is intuitively clear. The RMSEs of
τ̂ ∗

y 1 and τ̂ ∗
y 3 are nearly identical, both being less than

that of τ̂ ∗
y 2.

(iv) The approximations we presented to the variance,
and hence standard error, of the three estimators
work well under constant measurement error when
µδ > 0, but deteriorate slightly when µδ < 0. Un-
der a variable measurement error process, the magni-
tude and direction of its effect on the standard error
approximation differ from one error distribution to
another. Overall, the absolute size of the effect in-
creases directly with increasing σδ .

There are a number of ways in which the results presented
here can be extended. It would be of interest to determine
how estimators of variance are affected by measurement error



598 Biometrics, June 2009

in the auxiliary variate, as well as the coverage of nominal
(1 − α)100% confidence intervals are affected by measure-
ment error in the auxiliary variate. When the relationship
between y and x does not pass near the origin, the linear re-
gression estimator is more apt, in the model-assisted sense of
Särndal et al. (1992). It is not clear whether the results of mea-
surement error in x observed for the ratio estimators of this
article would be magnified or diminished with the regression
estimator of τ y . Although we have taken a design-based ap-
proach to infer the effect of fixed measurement error, there
may be utility in a model-based approach that postulates a
probability distribution for the error of repeated measurement
of each unit of the population. Surely for some practitioners
who are more accustomed to relying on a presumed model as
the basis for statistical inference, this would be a more satis-
fying approach. Accordingly, we shall report on our study of
this approach later. Lastly, the combination of measurement
error in both y and x, possibly stemming from different error
processes, needs to be examined.
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