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Abstract: We developed and evaluated an individual-tree height growth model for Douglas-fir [Pseudotsuga
menziesii (Mirbel) Franco] in the Inland Northwest United States. The model predicts growth for all tree sizes
continuously, rather than requiring a transition between independent models for juvenile and mature growth
phases. The model predicts the effects of overstory and understory vegetative competition on height growth. Our
model requires attained height rather than tree age as a predictor variable, thereby avoiding the problems of site
index. Site effects are introduced as a function of ecological habitat type, elevation, aspect, and slope. We used
six data sets totaling 3,785 trees in 314 plots. The structure of the data and the model indicated the need for a
mixed-effects, nonlinear modeling approach using maximum likelihood in a linear differential equation with a
power transformation. Behavior of the model was analyzed using a state-space approach. Our results show that
both overstory and understory density affect height growth, allowing a manager to make informed decisions
about vegetation control. FOR. SCI. 54(1):107–122.
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WE PRESENT AND EVALUATE an individual-tree
height growth model for Douglas-fir (Pseudo-
tsuga menziesii) in the Inland Northwest. We

developed this model using a collection of modeling strat-
egies that answer or circumvent a number of challenges that
have traditionally beset individual-tree height growth model
construction.

A major use of models of stand dynamics is to estimate
and predict the effects on stand growth of stand density,
which is the major factor that the forest manager can ma-
nipulate in the developing stand. The development of mod-
els that represent forest dynamics has been hampered by the
modest detail of data available for modeling height
increment.

Competition effects have rarely been considered in mod-
eling top height growth, because top height growth is as-
sumed to be relatively independent of stand density across
the range of operational densities (Clutter et al. 1983, Smith
et al. 1997, Husch et al. 2003). However, this assumption is
not necessarily defensible in natural stands or when trees are
competing strongly. Competition during the early years,
which is a normal condition in natural and selection forests,
reduces height increment and postpones the age of maxi-
mum growth-rate by up to 50–100 years in Europe (Ass-
mann 1970). During the juvenile period, reducing the den-
sity of competing vegetation plays a critical role in early
forest growth (Daniel et al. 1979, Smith et al. 1997). Fur-
thermore, several authors have reported stand density ef-

fects on height growth of older trees (Gaiser and Merz 1951,
Lloyd and Jones 1983, MacFarlane et al. 2000). Also, some
authors have reported positive (i.e., increasing) effects of
density on both height and diameter growth of juvenile trees
(e.g., Scott et al. 1998, Woodruff et al. 2002, Kerr 2003).

Some models do include density effects on height
growth. For example, adjustments of site index curves due
to density have been implemented in some areas of forest
height growth modeling (Alexander 1966, Alexander et al.
1967, Flewelling et al. 2001). The influence of stand density
on height growth models was recognized in other modeling
efforts, but site index was still used as the driving variable
(Alexander 1966, Alexander et al. 1967, Cieszewski and
Bella 1993, Flewelling et al. 2001, Hall and Bailey 2001,
Uzoh and Oliver 2006). A notable exception is the Progno-
sis model (Stage 1973, Wykoff et al. 1982), which includes
reduction of the height growth through a relation of height
to diameter growth without using site index.

Most models that include the effects of understory den-
sity on height increment are focused on juvenile trees. The
greatest potential for improving growth rates in forests is
during the early stages of establishment before canopy
closure (Mason et al. 1996, Mason 2001, Watt et al. 2004).
Accurate modeling of the development of recruited and
juvenile trees is crucial for simulation models to achieve a
consistent simulation output (Golser and Hasenauer 1997),
and development of accurate juvenile tree growth models
sensitive to competition would enable managers to make
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informed decisions regarding vegetation management (Watt
et al. 2004).

Some current juvenile models have omitted competing
vegetation effects (see, e.g., Nigh and Love 1999). Models
that account for competing vegetation, for example, Mason
et al. (1996), Loveall (2000), Mason (2001), Watt et al.
(2004), and Westfall et al. (2004) are focused on planta-
tions, where clear cutting is the most common harvesting
method. Clear cutting promotes juvenile development with-
out overstory effects, so the models cannot be applied to
other harvesting systems or to uneven-aged or mixed stands.
Besides, under intensive forest management, treatments of
competing vegetation, and spacing are more homogeneous.
Thus, their generally uniform growth can be modeled at
either a stand- or individual-tree level of organization.

Modeling juvenile height increment has been hampered
by the correlation between quantity of competing vegetation
and height increment of the subject species in natural stands.
Good sites produce both more competing vegetation and
more height increment than do the poorer sites. If the
application of the prediction of height increment is for
undisturbed natural stands and is calibrated from a random
sample of the population, then the aliasing of quantity of
vegetation for site quality does not bias that prediction. Our
objective, however, is to model the effects of modifying
competition so the aliasing would be a major problem. To
determine an independent effect of competition, therefore,
requires data in which this aliasing of competition variables
for site quality is nullified. The necessary independence can
be obtained by the experimental design of direct control of
the competing vegetation.

Our model is intended for imbedding in a model that has
an individual-tree level of organization, with output inte-
grated to the stand level (Stage 2003). Models of this
structure often calculate height increment in two or three
stages—as attained height of new regeneration at a fixed
time after disturbance, as subsequent height increment of
juvenile trees, and finally, as height increment of larger
trees.

In this general framework, estimates from juvenile- and
older-tree models usually give different predictions for the
same conditions. Many current juvenile height growth mod-
els have been built using only juvenile trees to be used up to
the point at which large tree height growth models become
applicable. However, in most cases the predictions from
juvenile and older tree models at the same point (e.g., at the
same age or height level) are different. Wykoff et al. (1982)
proposed a smooth transition to accommodate this incon-
sistent model behavior, when using juvenile and older tree
height growth models. It would be preferable to have one
model that provides consistent projections for all phases of
growth.

Empirical analysis of height growth has usually used for
forward finite difference models. In such models the period
of observation used for fitting height growth models affects
the predictions. Several period lengths have been used for
fitting height growth models, mainly between 5 and 10
years (e.g., Stage 1973, Wykoff et al. 1982, Hann and
Ritchie 1988). A user who needs to predict increment for a
period length different from the length of the calibration

period must interpolate. Different interpolation methods
have been developed to deal with this issue (MacLean and
Scott 1987, Ochi and Cao 2003, Cao 2004) but all of them
are ad hoc “fixes” and do not account for biological behav-
ior. Instead, using differential equations (i.e., any equation
that involves differentials or derivatives, Franklin 1944)
will always result in compatible estimations regardless of
the period length, so that complex interpolation methods are
unnecessary. Another important advantage of using differ-
ential equations is their flexibility, allowing us to combine
data sets with increments measured at intervals of varying
length. An interesting application of this combination of
diverse sources of data was shown by Garcı́a (2005). Then,
using these data we can fit a model based on a differential
equation, and when we want to predict, we integrate the
model over the period of interest. If changes in the inde-
pendent variables are simulated by forward difference mod-
els, their effect is assumed to follow their average change
during the period used to calibrate our differential equation
of height increment. Our objectives are to develop a bio-
logical height growth model incorporating all competing
vegetation effects (trees, shrubs, forbs, and grasses), also
representing growth of trees of all sizes, which does not
depend on length of period of observation, and recognizing
the statistical implications of analyses of data in which
sampled trees are clustered in plots.

We first hypothesized a model consistent with our un-
derstanding of the growth of Douglas-fir. At this stage, we
used parameters from published models for height incre-
ments of dominant trees absent any consideration of com-
petition. Then we postulated a range of parameters of the
competition components of our hypothesized model to as-
sure that the proposed mathematical model had sufficient
flexibility to encompass the uncertainty of our expectations
(Salas et al. 2005). Only then did we introduce data into the
model. In our initial analyses we used two data sets deemed
to have the strongest basis for representing competition
effects—one consisting of juvenile trees with experimen-
tally controlled understory competition and the other con-
sisting of trees 14–50 m in height drawn from undisturbed
stands of known levels of stocking. These analyses nar-
rowed the choice of expressions for competition and in-
formed the choice of parameters to be considered random in
the mixed-effects statistical model (Salas 2006). Four addi-
tional data sets then were added into the analyses to
strengthen the representation of trees in the less-than-dom-
inant crown positions. In the last step the behavior of the
final model was explored.

Data
Study Area

Our data come from forest stands located in the Inland
Northwest region of the United States. This is essentially the
lower portion of the Interior Columbia River Basin, which
is in the coterminous United States East of the crest of the
Cascade Mountain Range (Hessburg and Agee 2003), cov-
ering states of Idaho, western Montana, and eastern Wash-
ington. The Inland Northwest landscape has much variation
owing to great variety in climate, geology, landforms and
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topography, plants and animals, and ecological processes
(Hessburg and Agee 2003). Over broad areas in the Inland
Northwest, rugged mountainous topography, contrasting
geologic substrates, and a highly variable maritime influ-
ence from the Pacific coast combine to create a wide variety
in species composition and productivities (O’Hara et al.
1996). Existing stand structures are strongly influenced by a
long history of partial harvests and impacts of pests on
particular species in mixed-species stands.

Measurements

Our analysis involved six data sets. Not all required
variables in the model were observed for all of these. When
a variable was missing, it was estimated from other sources.
However, estimates of particular parameters in the model
were based on only the subsets of the data with field-mea-
sured values of the associated variables. Of the six data sets,
only the Inland Northwest Growth and Yield Cooperative
(INGY) sampling design (which contains juvenile trees and
is explained below) would have permitted subject-tree-cen-
tered (distance-dependent) measures of competition. There-
fore, we computed all competition indices as average for the
entire stand. As stand-level variables, they also are subject
to less sampling error than more localized indices. Data with
intermediate sized trees come from the Intermountain Forest
Tree Nutrition Cooperative (IFTNC) of the University of
Idaho. Of the four IFTNC data sets, only two, the Forest
Health Trial (FHT) and Klickitat included observations of
understory vegetation. Data with the largest sized trees
come from the stem analysis data measured by Monserud
(1984). Further details about his measurements and our
estimates of missing variables are explained below.

1. INGY. The most extensive and detailed data for juve-
nile trees come from the “Small Tree and Competing
Vegetation” study established during 1998 by INGY.
In this study of 23 stands, each stand was selected to
represent a homogeneous combination of site quality,
overstory density, and understory competition. Within
each stand, seven permanent plots were established.
Each plot comprised a circular 1,816 m2 (0.46-acre)
plot in which large trees (�26.7 cm [10.5-in.] dbh)
were measured, a circular 1,052 m2 plot (0.26-acre) in
which medium trees (9.1–26.7 cm [3.6–10.5 in.] dbh)
were measured, and six circular 28 m2 plots
(0.007-acre) in which small trees (0.15–0.3 m [0.5–1
ft] in height to 26.7 cm [3.5 in.] dbh) were measured.
Furthermore, each small-tree plot has a 1-m2

(0.0002-acre) plot in which understory vegetation was
measured. Three vegetation treatments (herbicide: T1,
control (i.e., no application), T2, single application;
and T3, repeated application) were applied randomly
to each measurement unit (large tree plot) within an
installation. Treatments 1 and 3 were randomly as-
signed to two plots each, and treatment 2 was assigned
to three plots, for a total of seven plots. The goal of the
treatment was to reduce the foliar biomass of under-
story vegetation (INGY 1999) and allow growth of
small trees without competing vegetation (i.e., shrubs,

forbs, or grasses), because it has been reported that
like tree growth increases in good sites, levels of
understory increase as well (Stage and Boyd 1987,
Walstad and Kuch 1987). Several variables were mea-
sured in each plot at different years (for more details,
see INGY 1999).

Crown competition factor (CCF) (Krajicek et al.
1961) of each individual tree was estimated using the
CCF models fitted by Wykoff et al. (1982) according
to each species and dbh range. For species without
models, the grand fir (Abies grandis) equation was
used. Stand basal area (G), CCF, and number of trees
per hectare (N) were expanded to a per hectare basis
and summed over the subplots. Understory cover
(UCOVER), understory height (UH), and understory
crown volume (UCV) were computed as understory
variables. UCOVER was ocularly estimated in each of
the understory plots. UH was computed by averaging
the height of the understory in each of the understory
plots. UCV was computed by multiplying the average
crown length of the understory by the crown area
(UCOVER computed on area units). UCOVER, UH,
and UCV were computed on the basis of measure-
ments in each understory plot, and as this measure-
ment was established at the center of the small tree
plot, it was assumed to represent the understory vari-
ables at the small tree plot level.

2. Monserud. The data for the largest trees come from
the site index study of Douglas-fir by Monserud
(1984) in the same region. Monserud (1984) selected
135 stands (plots) to cover a wide range of ages and
the five major habitat series that contain Douglas-fir in
the northern Rocky Mountains. He used stem analysis
data for fitting his height growth equations, but fur-
thermore he recorded overstory information for each
stand for which three dominant trees were selected for
stem analysis. This information was recorded in 1976.
Each plot consisted of three angle count sample points
with a basal-area factor of 20 ft2/acre (4.6 m2/ha).

Because Monserud (1984) only measured tradi-
tional variables used in site index studies (recording
neither understory variables nor small tree variables),
the past and current (in 1976) overstory (basal area
[G], trees per hectare, and CCF) and understory vari-
ables (UCOVER and UCV) needed for our modeling
were estimated using the Shrub and Cover extension
(Mouer 1985) of Prognosis (Stage 1973, Wykoff et al.
1982).

3. Forest Health Trials. FHT plots were established in
managed, second growth Douglas-fir stands in the
same region, but the aim here was to study the influ-
ence of soil parent material on the nutrition and health
of established conifer stands (Garrison et al. 1997b,
Moore and Mika 1997). These study sites were estab-
lished between 1994 and 1996, and plots were 0.2 ha
in area.

4. Klickitat. This data set comprises study sites installed
in the Klickitat area of South-Central Washington to
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assess response to fertilization (Garrison et al. 1997a).
Only unfertilized control plots were used. These study
sites were established in 1990, and plots were 0.4 ha in
area.

5. Douglas-fir Trials (DFT). The DFT data set is from
the unfertilized control plots for a fertilization exper-
iment established in second-growth, even-aged, man-
aged Douglas-fir stands in the Inland Northwest re-
gion (Moore et al. 1991). These study sites were
established between 1980 and 1982, and plots were
0.04 or 0.08 ha in area.

6. Umatilla. These plots are located in the Umatilla Na-
tional Forest (northeastern Oregon), in second-growth
Douglas-fir and grand fir stands (Garrison et al. 2000).
These study sites were established in 1991, and plots
were 0.112 ha in area. Whereas the previous three data
sets are intermediate tree sizes, Umatilla has juvenile
trees.

The last two data sets unfortunately lacked understory
observations. Therefore, we estimated them from the Shrub
and Cover Extension as described for the Monserud data set.
Stand characteristics for each data set are summarized in
Table 1.

For each tree of the data, a periodic height increment and
its period were computed. To ensure that the juvenile trees
in the INGY data set had fully responded to the treatment of
competing vegetation, only observations with a measured
period greater than 5 years were used. (Dennis Ferguson,

pers. comm., US Forest Service, Jan. 9, 2006). Only the last
period of stem analysis data (Monserud) was used because
the stand data collected at time of felling could not be
back-dated reliably for more than one period. Our data
cover a wide range of heights and height growth for Dou-
glas-fir (Table 2).

The periodic annual height increment (pai) shows a wide
range of competition, with site quality, weather, and
insects/disease (among others) influencing the tree growth.
However, the general trend of pai is according to the bio-
logical growth of trees (Assmann 1970, Vanclay 1994, von
Gadow and Hui 1998, Zedaker et al. 1987). Figure 1 shows
the data segregated by each dataset.

Modeling Strategy

We first develop the biological structure of our model in
terms of the interaction of competition with the parameters
of the height growth model. Then we define the statistical
model components and the computational procedures for
estimating the parameters.

Height Growth Model

We used a generalization of the von Bertalanffy (1957)
growth model (a generalization that allows one of the pa-
rameters to be estimated, instead of being held constant as
in von Bertalanffy 1957), a model also studied by Richards
(1959) on plant growth and by whose name it has become
known to American researchers (Zeide 1993). This is a

Table 1. Stand sample variables summary for each data set

Data set and statistic N (trees/ha) G (m2/ha) dg (cm) CCF (%) LAI (m2/m2)

DFT (99 plots)
Minimum 222.3 12.9 13.3 70.0 2.2
Maximum 1,630.2 60.8 41.7 261.0 5.0
Mean 658.4 32.0 25.9 156.7 3.3
SD 286.9 9.9 5.4 44.2 0.6

FHT (26 plots)
Minimum 247.0 7.1 8.7 46.0 1.6
Maximum 3,877.9 67.7 49.9 282.0 6.1
Mean 932.0 23.6 20.6 116.8 3.7
SD 815.1 13.6 8.6 59.1 1.0

INGY (55 plots)
Minimum 0.0 0.0 0.0 0.0 0.0
Maximum 198.7 17.0 40.1 61.0 2.4
Mean 64.6 4.5 19.1 17.2 0.6
SD 67.1 5.3 14.0 19.6 0.7

Klickitat (6 plots)
Minimum 321.1 37.6 25.9 160.0 2.1
Maximum 1,111.5 65.7 39.5 284.0 3.4
Mean 662.8 46.2 30.7 212.5 2.8
SD 260.2 12.5 5.0 54.0 0.5

Monserud (118 plots)
Minimum 234.7 8.4 7.9 41.0 1.6
Maximum 3,542.0 66.9 41.0 350.0 5.9
Mean 1,090.1 36.0 22.2 158.2 2.9
SD 620.9 12.9 6.1 58.0 0.8

Umatilla (10 plots)
Minimum 790.4 0.5 2.3 3.0 0.1
Maximum 1,383.2 10.6 11.1 62.0 1.3
Mean 1,039.9 3.5 5.4 20.7 0.5
SD 183.9 4.1 3.5 22.4 0.5

dg � quadratic mean diameter.
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nonlinear model used successfully in forestry for modeling
growth in terms of several variables, mainly in its integrated
form (e.g., Pienaar and Turnbull 1973, Pienaar and Shiver
1984, Zeide 1993, Hall and Bailey 2001), but also used in its
differential form (e.g., Garcı́a 1983, Valentine 1997). The
Richards model comes from a linear differential equation
with a power transformation (Garcı́a 1983). The linear dif-
ferential equation with a power transformation is

dhc

dt
� b�ac � hc�. (1)

If we analytically integrate a differential equation, we
will obtain a yield (i.e., cumulative growth) equation. Then,
integrating Equation 1 between t0 and t1 gives the height at
t1 (that is, h1), in terms of h0 and the period length t1 � t0
(Garcı́a 1979, 1983, Rennolls 1995). The integral yields

h1 � a�1 � �1 � �h0/a�c� exp[�b�t1 � t0��}
1/c. (2)

This expression could be called the yield function, as-
suming the definition of yield as accumulated growth as per
Zedaker et al. (1987) and Vanclay (1994). a, b, and c are
parameters to be estimated. a is the upper asymptote or
maximum level of yield, b is the growth parameter (also has
been called a scale parameter, which governs the rate of
change, by Schabenberger and Pierce 2002), and c is a
shape parameter. The value of (h1 � h0) will always be of
the same sign as (t1 � t0) if b and c are positive. As pointed
out by Garcı́a (1983), t0 � h0 � 0 in most forestry appli-

cations. Then, the yield function becomes the so-called
Chapman-Richards (Pienaar and Turnbull 1973, Pienaar
and Shiver 1984, van Laar and Akça 1997, von Gadow and
Hui 1998) function,

h1 � a�1 � e�b�t1��1/c. (3)

As a function of age, Equation 3 is useful mainly for
purposes of modeling forest plantations, where the age is
easily determined. However, exact age is difficult to deter-
mine in natural stands. Breast height age is usually used but
is not useful for modeling growth of small trees, because
they do not have dbh. Besides, models for predicting growth
should not have age as a primary variable (Spurr 1952).
Another important feature of Equation 2 is that it permits
different length of periods of observation when fitting the
model, and use of the differential equation (Equation 1)
makes it possible to obtain the instantaneous growth based
on height instead of age.

Incorporating Competition Effects

Increment can be increased by increasing a or b in
Equation 2. We will describe introducing competition into
the b parameter although a similar modification of a was
also evaluated. Competition due to overstory (large trees)
and understory are represented by three variables in our
proposed model [1]. Equation 2 is modified by having the b
parameter depend on competition, which we denote as b�.
The modified growth parameter is the expression

b� � b��4 �
1

1 � e�� , (4)

� � �0 � �1OVER0 � �2

OVER
0

�h0

� �UH0

h0
2 ��3CVEG0 ,

(5)

where b is a parameter related to the maximum growth rate,
OVER0 is a variable that represents the overstory competi-
tion (e.g., it could be CCF, BA, or basal area per unit area
of trees larger than the subject [BAL]), UH0 is the average
height of the understory, and CVEG0 is a measure of the
amount of competing vegetation (e.g., it could be under-
story cover or understory crown volume). Note that the 0
subscript of the variables means those that are measured at
the beginning of the period. The parameters to be estimated
are �0, �1, �2, �3, and �4.

This term (b�) was created on the basis of a “logistic
mirror” relation of the reduction of the potential (i.e., with-
out competition effect) height growth. If �4 � 1, b� equals
b multiplied by a value between zero for very small � and
approaches unity for � large. Thus, growth will increase for
positive terms in Equation 5. This behavior allows some
range where this potential is almost independent of density.
This formulation is different from the formulation used by
Golser and Hasenauer (1997), where height growth was
very sensitive to low levels of competition. Our hypothesis
is that, at least in some range of low densities, height growth
should not be strongly affected by competition and that at

Table 2. Tree sample variables summary by data set

Data set and statistic
h0

(m)
h1

(m)
Period
(years)

pai
(m/yr)

BAL
(m2/ha)

DFT (1995 trees)
Minimum 6.3 7.2 8.0 0.0 0.0
Maximum 34.6 37.8 8.0 0.6 59.5
Mean 19.0 21.1 8.0 0.3 19.4
SD 4.8 4.9 0.0 0.1 11.4

FHT (336 trees)
Minimum 1.3 2.1 4.0 0.0 0.0
Maximum 45.4 50.5 8.0 0.9 57.6
Mean 13.7 16.8 7.7 0.4 11.9
SD 7.7 8.0 1.0 0.2 9.2

INGY (786 trees)
Minimum 0.2 0.2 5.0 0.0 0.0
Maximum 5.8 8.2 6.0 0.7 17.0
Mean 1.2 2.1 5.5 0.2 6.2
SD 1.1 1.8 0.5 0.2 5.4

Klickitat (123 trees)
Minimum 13.8 14.5 6.0 0.1 0.0
Maximum 33.4 37.1 6.0 0.8 61.3
Mean 23.6 26.5 6.0 0.5 27.2
SD 4.4 4.8 0.0 0.1 15.8

Monserud (377 trees)
Minimum 14.1 16.3 6.0 0.0 0.0
Maximum 48.8 49.4 19.0 0.5 65.5
Mean 31.3 33.0 9.9 0.2 14.9
SD 5.9 5.5 1.0 0.1 10.8

Umatilla (168 trees)
Minimum 1.4 2.2 8.0 0.1 0.0
Maximum 9.0 13.4 8.0 0.8 10.6
Mean 2.9 7.2 8.0 0.5 2.2
SD 1.6 2.0 0.0 0.1 3.2

h0 � initial height; h1 � height measured at the end of the period.
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extremely high levels of competition, increment is again
less sensitive to increasing competition.

The term b� represents a reduction of the growth param-
eter due to overstory and understory competition. Variables
representing the overstory effect (through OVER) were
screened as a quadratic effect for leaf area index (LAI),
CCF, G, and BAL. Although the intent of this transforma-
tion was to allow curvature of the effect of OVER variables,
it also allowed for a positive effect of stocking for some
portions of the span of the variable. A similar effect was
successfully modeled by Ferguson et al. (1986) for Dou-
glas-fir, grand fir, and subalpine fir (Abies lasiocarpa).
Growth is also reduced by competition from understory
vegetation; see, e.g., Mason et al. (1996) and Watt et al.
(2004) (among others). The height ratio (UH/h0

2) forces the
reduction from understory vegetation to be large only for
juvenile trees and less so for bigger trees because the ratio
will be much lower for larger trees.

We also introduced overstory density and competing
vegetation into the asymptote (a) using an expression sim-
ilar to b�. However no significant improvement was
achieved. We therefore limited competition effects to the

growth parameter (b) and reserved the asymptote (a) for site
productivity (quality) effects.

Statistical Model

Our data set is hierarchical, because for all the trees
within a plot, we are using the same stand value of OVER.
Schabenberger and Pierce (2002) classify this design as
clustering data through hierarchical random processes.
Mixed-effects models are quite suitable for this kind of
design. We consider the plot (in each location) as the
random factor (i.e., group). Unfortunately, the small-plot
level could not be used as a random effect because in some
of the plots the number of trees was too small to get
convergence.

To ease notation, define the n-dimensional response vec-
tor Y by an arrangement of h(i,j,k	period), i.e., the height at
the end of the period (since the kth time, period � t1 � t0)
at the jth plot in the ith tree. Then, the nonlinear mixed
effects model can be expressed as

Y � f(X�, Zb) 	 �, (6)

Figure 1. Periodic annual height increment for Douglas-fir in the Inland Northwest by data set.
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where, using a mix between Laird and Ware (1982) and Hall
and Bailey (2001) notation, f is a nonlinear function, �
denotes a P 
 1 vector of unknown population (i.e., fixed)
parameters, X is a known n 
 p design matrix linking � to
Y, b denotes a k 
 1 vector of unknown individual effects
(i.e., random), and Zi is a known ni 
 k design matrix
linking b to Y. The � vector is independently distributed as
�(0, R) (normal with mean 0 and covariance matrix R), and
the random parameters b are also distributed �(0, D) (nor-
mal with mean 0 and covariance matrix of the random
effects D).

We fit all models using maximum likelihood (ML) the-
ory, assuming a normal probability density function for the
residuals. Restricted maximum likelihood (REML) estima-
tion has gained popularity among statisticians, because
compared with a ML estimator, the REML procedures take
into account the loss in degrees of freedom resulting from
estimating fixed effects in the model (Harville 1977); there-
fore, variance components are estimated without being af-
fected by the fixed effects (McCulloch and Searle 2001).
For those and other reasons, they have come to be preferred
in general (Gregoire and Schabenberger 1996). Neverthe-
less, we did not find any apparent difference in the esti-
mated random effects between the ML and REML estima-
tors. Therefore, we prefer to use the simpler ML estimator,
which allows us direct comparison between models with
different fixed effects. Based on the comparisons conducted
by Dennis et al. (2006) and Staples et al. (2004) that showed
better performance of REML over ML estimators when
fitting a nonlinear model using an autoregressive process
(linear mixed-effects model), we think that important dif-
ferences may be found when fitting linear mixed-effects
models but not when using nonlinear models. Whichever
definition is adopted, note that REML does not define
estimates of fixed effects, because all REML methods are
designed to be free of the fixed-effects portion of a model
(McCulloch and Searle 2001).

We used the open-source statistical environment R (R
Development Core Team 2006), using the nlme package
(Pinheiro and Bates 2000). We compared models with the
Akaike information criterion (AIC) (Akaike 1973).

Variance functions were used to model the variance
structure of the within-group errors using covariates (Pin-
heiro and Bates 2000). All of the models were fitted allow-
ing a different SD for the error term per stratum (each data
set), as

Var(�ijk � bj) � �2g2 (	ijk, vijk, 
), (7)

where 	ijk � E[yijk � bj], vijk is a vector of variance covari-
ates, 
 is a vector of variance parameters, and g(�) is the
variance function, assumed to be continuous in 
 (Pinheiro
and Bates 2000). Then, this represents a variance model
with different variances for each S-stratum (i.e., each data
set),

Var��ijk� � �2
2
Sijk

, (8)

corresponding to the variance function

g �Sijk, 
� � 
Sijk
. (9)

To achieve identifiability, as recommended by Pinheiro and
Bates (2000) we imposed the restriction that 
1 � 1.

Fitting approach

The complexity of the model and diversity of the data
sets precluded estimating optimum values of all parameters
simultaneously. Our fitting approach, which paralleled that
of Salas (2006), consisted of the following five stages.

➤ Screen choice of OVER and CVEG.
➤ Estimate b and c.
➤ Estimate a as a random parameter and model a as a

function of site variables.
➤ Estimate parameters of understory variables conditional

on estimated asymptote â and with �4 as random
parameter.

➤ Estimate remaining parameters (�0, �1, and �2) condi-
tional on previous parameter estimates.

Screen Choice of OVER and CVEG

In our initial modeling, only the INGY and Monserud
data sets were available and used. We first fitted the tradi-
tional (i.e., without density effects) model (Equation 2)
allowing a to be the set of random parameters unique for
each plot (also called “local” parameters by Garcı́a 1983).
To assess the forestry predictor variables to be included in
our proposed height growth model (that incorporates den-
sity effects), Salas (2006) fitted different variants using the
same two data sets. These variants used different combina-
tions of both OVER and CVEG. The OVER variable was
one of the following: crown competition factor (CCF) (Kra-
jicek et al. 1961), stand basal area (G), trees per hectare (N),
and leaf area index (LAI). Either understory plot cover
(UCOVER) or understory crown volume (UCV) was used
as the CVEG variable. Salas (2006) obtained best fit using
G and UCOVER as OVER and CVEG variables,
respectively.

These analyses reported by Salas (2006) showed that the
ocular UCOVER fit better than the more complex UCV.
They also showed that stand basal area (G) was at least as
effective as the other, derived, variables for overstory com-
petition. However, the quadratic expression for overstory
competition proved to have a critical point (28.6 m2/ha) well
within the range of stand basal areas. Apparently the alias-
ing of stand stocking for site quality we expected in juvenile
tree data was present in the Monserud data for older trees as
well. Adding competition variables improved the likelihood
over the base model (Equation 2) with the same random
parameter a (likelihood ratio test P � 0.0001).

Substitution of stand basal area by basal area in trees
larger in diameter than the subject tree (BAL) appeared to
be a way of reducing the inherent correlation between
natural stand stocking and site quality. However, the Mon-
serud data was composed of mostly dominant trees with
little range of BAL. Therefore, we sought additional data
sets encompassing a sample across all sizes of trees within
each stand and, by virtue of previous thinning, might have
less aliasing of stocking for site quality. These additional
data sets (DFT, FHT, Klickitat, and Umatilla), which were
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detailed above, were supplied by the Intermountain Forest
Tree Nutrition Cooperative. Whereas stand-level basal area
appeared to be related to site productivity in the undisturbed
stands sampled by Monserud, BAL is an individual tree-
level attribute for which the distribution is determined by
the rules for sample tree selection within the stand and past
stand density management. Hence, although its upper limit
may be determined by the maximum basal area for the site,
its actual distribution reduces the aliasing of basal area for
site productivity. Furthermore, switching from basal area to
BAL also improved the log-likelihood of the model (lower
AIC). Therefore, our model uses BAL (basal area in larger
trees) as the OVER variable and UCOVER (understory
cover) as the CVEG variable in Equation 4.

Estimating b and c

Parameters b (Equation 4) and c (Equation 2) represent,
in our formulation, parameters unaffected by density. Thus,
we selected a subset (12 trees) of Monserud’s dataset, which
comprises the sample trees in the better sites studied by
Monserud (1984) and without notable past suppression.
Then, we fitted the yield model without density variables
(Equation 2), using nonlinear mixed-effects, allowing a as
random parameter. Through this process, we obtained the
estimates b̂ � 0.02018 and ĉ � 0.73708.

Estimating the Asymptote a

Our objective at this stage was to incorporate effects of
site quality using the random parameters as indicators of
effects common to all the trees on each plot. Only the
Monserud data set was suitable for this purpose because it
contained the oldest trees growing without density control.
Because site factors could operate either through the asymp-
tote a or through the growth parameter b (i.e., the parame-
ters of Equation 2), we tested several combinations of
random parameters for our proposed model in Equation 2.
The best fit was achieved with a as random parameter.

The next step used the set of asymptotes (random pa-
rameters) from each plot as variables to be predicted from
site factors. Two submodels to predict these random param-
eters (asymptotes) were compared. One predicted the a
parameters from site index. The other used slope, aspect,
elevation, and habitat type (called the site variables model).
The productivity model proposed by Stage and Salas (2007)
as the mathematical form gave the better fit to the asymp-
totes. This submodel (Table 3) for a then was inserted in
Equation 2 for all subsequent analysis and prediction.

Estimating Parameters of Understory Variables

�3 and �4 were estimated using only those data sets for
which the understory variables were measured in the field
(the INGY, FHT, and Klickitat data sets). By holding the
asymptote of the height growth model as predicted by the
site variables model for each plot and keeping b and c at
their previously estimated values, the height growth model
was fitted using mixed-effects models allowing �4 as the
random parameter. The estimates for �3 and the set of �4

values were saved.
We examined the relationship between the random pa-

rameters �4 and several stand and site variables. We fitted
the site variable model of Stage and Salas (2007) to try to
predict those random effects; however, we did not find any
statistically significant improvements in the fitted model
compared with just the population parameter estimate (i.e.,
average) of �4. Therefore, we use the mean value of the
parameter estimates of �4 for subsequent analyses.

Estimating Remaining Parameters

At this final stage, we used all six data sets to estimate
�0, �1, and �2 in the complete height growth model (i.e.,
Equation 2 having b as b� in Equations 4 and 5) using
generalized nonlinear squares. The asymptote of the model
was as predicted by the site variables model, �4 was held at
the mean of the random parameters as explained above, and

Table 3. Linear model of asymptote using site variables

Parameter Estimate SE t value P value

(Intercept) 2.661e 	 01 1.891e 	 01 1.408 0.163
Habitat class 2 �4.013e 	 00 2.481e 	 00 �1.617 0.109
Habitat class 3 �1.911e 	 00 2.370e 	 00 �0.807 0.422
Habitat class 5 3.409e 	 00 1.541e 	 00 2.213 0.029
Habitat class 6 5.194e 	 00 1.105e 	 00 4.700 8.34e � 06
Habitat class 7 6.030e 	 00 1.128e 	 00 5.347 5.67e � 07
Habitat class 8 3.800e 	 00 1.442e 	 00 2.635 0.01
EL 2.672e � 02 3.104e � 02 0.860 0.392
EL2 �1.023e � 05 1.230e � 05 �0.831 0.408
SL 8.528e 	 00 4.564e 	 00 1.865 0.065
SL cos(ASP) 2.356e 	 00 2.192e 	 00 1.073 0.286
SL sin(ASP) 5.493e 	 00 2.220e 	 00 2.471 0.015
SL ln(EL) �1.279e 	 00 6.959e � 01 �1.835 0.070
SL ln(EL) cos(ASP) �3.603e � 01 3.308e � 01 �1.090 0.279
SL ln(EL) sin(ASP) �8.268e � 01 3.373e � 01 �2.448 0.016
SL EL2 3.330e � 07 2.392e � 07 1.391 0.167
SL EL2 cos(ASP) 1.194e � 07 1.012e � 07 1.180 0.241
SL EL2 sin(ASP) 2.470e � 07 1.124e � 07 2.196 0.030

All parameters and statistics are in metric units. Residual SE � 3.813 on 100 d.f.; multiple R2 � 0.4976; adjusted R2 � 0.4122; F statistic � 5.825 on
17 and 100 d.f.; P � 5.088e � 09. Habitat class codes according to Wykoff et al. (1982, p. 66). SL � slope (%/100); EL � elevation (m); ASP � aspect
in degrees clockwise from north. Treatment contrasts are used for habitat class.
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the parameter estimate for the understory variable (�̂3) was
kept constant. Understory effects, as represented by pre-
dicted understory variables scaled by �̂3 are still changing in
accord with the stand history and condition.

The final parameter estimates for the full model are
shown in Table 4. Note that these statistical tests are ap-
proximate because the model itself was constrained to have
the parameter estimates values for �3 and �4 as explained
above. The bias (computed using residuals as observed
minus predicted) and the root mean squared error are also
shown in the same table.

Here we show the model to clarify its use. The proposed
height growth model predicts tree height at the end of a
period (i.e., time 1, t1), “h1”, as

h1�i, j�
� âj{1 � [1 � (h0(i,j)/âj)] exp[�b� (t1 � t0)]}

1/0.73708,

b� � 0.02018� 1.29031 �
1

1 � e��,

� � 0.06149 � 0.04677 BAL0(i,j)

� 0.36722
BAL0(i,j)

�h0�i, j�

� �UH0(j)

h2
0(i,j)

�
� � � 0.09243 UCOVER0(j)), (10)

where h1(i,j)
is height at the end of the period for the ith tree

at the jth plot (in m), âj is the predicted asymptote at the jth
plot (in m) using the site-factor model (Table 3), h0(i,j)

is
height at the beginning of the period for the ith tree at the jth
plot (in m), t1 � t0 is the period of prediction, BAL0(i,j)

is
basal area in trees larger than the ith tree at the jth plot at the
beginning of the period (in m2/ha), UH0(i,j)

is understory
height at the jth plot at the beginning of the period (in m),
and UCOVER0(i,j)

is understory cover at the jth plot at the
beginning of the period (in %).

Diagnostic graphs of the standardized residuals showed
no concerns for the model assumptions (Figure 2). Based on
the median of the predictions for the smallest height class,
the model seems to be biased; however, the data are posi-
tively skewed, so the mean will be higher than the median
and therefore the bias will be less than it appears. As a
matter of fact, the small trees have a smaller bias than the
overall average, 0.39% versus 0.51%. The root mean
squared error of the model is 4.56%.

Behavior Analysis
Height Growth under Different Levels of Stand
Basal Area

We numerically computed the instantaneous height
growth [i.e., derivative (dh/dt)] using the proposed model
(Table 4). This derivative corresponds to the height incre-
ment in 1 year. It must be pointed out that even though a
discrete time step differential equation is being solved, the
finite difference for 1 year corresponds to the derivative in
this case, because the height increment for a period less than
1 year (how the growth rate changes within a season) is well
beyond the scope of this project and model. The derivative
of the model was computed using four different basal area
in larger trees levels (5, 10, 20, and 40 m2/ha) as constant
through time (up to year 150). We assumed for this com-
putation the following values for the other needed variables:
an average understory height (UH) of 1 m and understory
cover (UCOVER) of 20%. The initial conditions were h0 �
0.2 m and t0 � 5 years, and an asymptote of 45 m was
assumed. Figure 3a summarizes this framework in a system
dynamics diagram. The plots of the current annual height
increments against time and height are shown in Figure 4.

Dynamic System

Several authors have pointed out the importance of mod-
eling complex systems (e.g., a forest) as an interacting
dynamic system, both in the forestry literature (Leary 1970,
Garcı́a 1994, Stage 2003) and in the literature on general
biological problems (Haefner 1996, Adler 1998). In dy-
namic systems, the main idea is to characterize the state of
the system at any point in time so that given the present state
the future does not depend on the past (Garcı́a 1994); this
may be called the state-space approach (Aoki 1990, Garcı́a
1994, Buckland et al. 2004).

Even though building such a dynamic system is beyond
the scope of this study, we could predict the development of
the auxiliary variables (i.e., basal area in larger trees, un-
derstory cover, and understory height) of our height growth
model using Prognosis (Stage 1973, Wykoff et al. 1982) and
then review the behavior of this model. For this purpose, we
have implemented a simple continuous-time dynamic sys-
tem model (Adler 1998), as follows, to assess the behavior
of the proposed model.

We used the proposed height growth model. Based on
this expression, we can express the rate of change of the
state variable, height, as a function of the state variable
itself. As forests are dynamic systems, we should also
represent the other stand variables in differential equation
form. Because of the major effect of stand basal area in
forest management practices we developed a differential
equation model for this variable from the yield tables of
Stage et al. (1988) for a naturally regenerated stand on a site
index of 21.3 m (70 ft) in the same region (Inland North-
west). Using those values, we fitted a growth model (Equa-
tion 2, where now instead of modeling h1 we are modeling
stand basal area at time 1, G1) using nonlinear regression
and find the parameter estimates for a, b, and c for the basal

Table 4. Parameter estimates for the proposed height growth model

Parameter Estimate SE t value P value

�0 0.06149 0.0316 1.9450 0.0519
�1 0.04677 0.0066 7.0686 �0.00001
�2 �0.36722 0.0284 �12.9340 �0.00001
�3 �0.09243 0.0092 �10.0458 �0.00001
�4 1.29031 0.0261 49.4381 �0.00001

Note that the parameters �0, �1, and �2 were estimated using the
entire data set, whereas �3 and �4 were estimated using the data sets
with which understory variables were measured. The P-values are
approximate because the nature of the fitting approach used. Fit
statistics: root mean squared error � 
0.8977 m; bias � 0.0890 m.

Forest Science 54(1) 2008 115



area yield function. The equation for stand basal area (in
metric units) in a Douglas-fir naturally regenerated stand is

G1 � 61.6171�1 � �1 � �G0/61.6171�0.22812�

exp[�0.03479(t1 � t0)]}
1/0.22812. (11)

Based on the above, we built the following dynamic sys-
tems, from a simpler one to a more realistic one:

a. Height growth and basal area in larger trees interacting
simultaneously. We simulate a system, in which
height and basal area in larger trees are interacting
simultaneously (Figure 3b). Using Equation 11 and, as
our model uses BAL, we used four different percent-
ages (0, 30, 60, and 90%) of the stand basal area
trajectories, as values for BAL. These trajectories of
BAL might be interpreted as an approximation to the
crown class of trees. UH and UCOVER variables were
set to be constant through time (in the absence of
suitable differential equations), with values of 1 m and
20%, respectively. The initial conditions were h0 �

0.2 m, t0 � 5 years, and BAL0 � 0.23 m2/ha. We
assume a fixed value for the asymptote of 45 m (we
also could have used the site variable model). Finally,
we plot the height yield depending on the levels of
BAL running simultaneously with our height growth
model.

b. Height growth, basal area in larger trees, and under-
story height interacting simultaneously. We did not
have data for fitting a model for understory height, but
we instead built an equation that allowed us to simu-
late the fact that understory height would be greater
than tree height until tree height reaches some thresh-
old height (we use 1.3 m). The model is a function of
tree height as follows

UH � k1�1 � e�k2�k1h�

1 � e�k2 �, (12)

where UH is understory height, h is tree height, and k1

and k2 are parameters that set to be equal to 1.3 and
0.3, respectively.

Figure 2. Standardized residuals of the proposed model against predicted values (a), basal area in larger trees (b),
understory height (c), and understory cover (d). Boxplots of the standardized residuals by 10 classes (defined by the
percentiles, therefore drawn using the same numbers of observations) of each variable.
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Then we included the understory height function
(Equation 12) in our previous system, allowing the
same levels for the rest of variables as explained
above. This analysis allows us to examine the effect of
understory height for very small trees for different
crown classes (i.e., different BAL trajectories) of

trees. Figure 3c summarizes this framework in a sys-
tem dynamics diagram.

c. Height growth, basal area in larger trees, and under-
story height interacting simultaneously for different
levels of understory cover. So far, we only tested

Figure 3. Dynamic system diagrams. State variables are represented by boxes, derivatives by tick arrows with control
valves (rates, flows), and the dependence of rate on state variables by curved arrows. All the rest are constants. A variable
(or constant) in a gray box means that some levels of it were used. b� is representing expression 4. The systems are the
following: system having only the height growth model as the differential equation and constant levels of BAL (a); system
having differential equations for both height growth and BAL with different trajectories of BAL (b); system also having
a differential equation for understory height (c); and system as previously but using different constant levels of
understory cover (d).

Figure 4. Height growth against time (left) and height (right), for constant basal areas in larger trees of 5, 10, 20, and
40 m2/ha. An asymptote of 45 m was used for this figure.

Forest Science 54(1) 2008 117



having one value of UCOVER, but here we allow
different levels of understory cover to test its effect in
the behavior of the model (Figure 3d). We use four
levels of understory cover (0, 40, 100, and 160%).

Dynamic Analyses of the Fitted Model

The model not only shows different levels of maximum
height growth (derivative plots, Figure 4) but also different
times when this occurs, which is a desirable property. It is
important to point out that these plots (Figure 4) only show
the potential behavior of height growth using our models
but are not accounting for the fact that a Douglas-fir tree
under heavy suppression for more than 140 years would not
survive such suppression.

We assumed different constant values for basal area in
larger trees as a percentage of the stand basal and simulate
the height, representing the system of Figure 3a. Also, we
used a differential equation (Equation 11) for representing
four different trajectories of basal area in larger trees and
simulate height, representing the system of Figure 3b.
Heights for both systems are shown in Figure 5. Even
though similar, the curves of this figure show that when
considering understory height as a function that varies ac-
cording to the tree height, the model produces a reduction of
height as expected, and this reduction is more pronounced
for trees with greater values of basal area in larger trees (i.e.,
intermediate and suppressed trees). In Figure 6 instead of
only using a constant value for understory cover, we used
two values to represent two different competing vegetation
scenarios.

A full system for which we have differential equations
for tree height, BAL, and UH under different levels of
understory cover was also simulated, as depicted in Figure
3d. We represent this system for the most dominant tree in
the stand, that is, the tree with BAL � 0, and for an
intermediate tree, with BAL � 60% of the stand basal area.
Height yields for both types of trees are shown in Figure 7.

Discussion
The random effects are representing the hierarchical

structure, which recognizes correlation among estimates for

individual trees within each plot. To use more than one
random parameter, however, produces strong correlation
among random-effects estimates of the parameters a and b.
As Pinheiro and Bates (2000) pointed out, this situation can
result in an ill-conditioned estimated variance-covariance
matrix, which suggests that the random-effects structure
may be overparameterized. Similar behavior of an overpa-
rameterized model was found by Gregoire and Schaben-
berger (1996) in volume equations, as well as by Hall and
Bailey (2001) in a height growth model using the Richards
function.

It is important to point out that the asymptote that we are
using here (45 m) for simulating the behavior of the model
is not a site index. Site index is the dominant height at
base-age 50 for Douglas-fir, and the asymptote is height at
infinite age. For comparison purposes we can compare the
height of our model for a dominant tree (the left panel of
Figure 7) with the height predicted by using Monserud’s
(1984) site index equation (the use of this model in predic-
tion is more clearly explained in Monserud 1985) for a
site-index of 21.3 m (70 ft) (as used in the present article
when fitting the stand basal area model, see Eq. 11). Our
model predicts 20.7 m. This result shows that our model
produces reasonable predictions for dominant trees, even
though it includes density effects. Furthermore, the asymp-
tote of 45 m that we are using in our behavior analysis is
similar to that determined using Monserud’s (1984) equa-
tion for a tree growing in a Douglas-fir habitat type series.

Simulation of dynamic systems that involve proposed
model(s) are fundamental in growth modeling. Following
the normal practice in statistics, we first analyze the “pure”
effect of each variable in the model. That is to say, we only
modify one variable and keep the remaining constant (as
showed in Figure 4, when we were varying BAL), and see
the behavior of the model. Nevertheless, use of this proce-
dure for testing the effect of competing vegetation variables
did not show much effect when in fact there is (as shown in
Figure 6). Therefore, dynamic systems are not only impor-
tant for growth modeling in ecology but also offer utility for
testing statistical models. As shown in the present research,
even though we lack sufficient data for building models for

Figure 5. Height development for different levels of basal area in larger trees, expressed as a percentage of the stand
basal area using a constant value (left) and a differential equation for understory height (right). Note that basal area in
larger trees of 0% of the stand basal area identifies the most dominant tree in a stand, and 90% identifies one of the most
suppressed trees in a stand.
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all of the variables that should be included in the system,
mathematical models with assumed parameters that behave
according to the literature offer us a way to overcome the
lack of data for those variables and allow us to more
realistically evaluate the behavior of the model.

The left panel of Figure 7 shows growth patterns for a
dominant tree—the one that would be used in calculating
site index. Even with the modest effects of understory
competition (40%) represented in these data, ignoring early
competition would seriously bias site index (20.7 m versus
15.4 m).

Therefore, use of site variables as measures of site pro-
ductivity has the following two advantages: first, these
variables are in a space of different units of measure than
site index, which has the same dimension as the height
growth model. Being able to omit site index as a predictor
variable in height growth models also helps to achieve the
independence assumption among variables used in statisti-
cal models. Second, these variables are not affected by stand
density and stand structure. Therefore, with this approach
we can use a broader concept of site productivity.

Further analysis should be focused on simultaneously
fitting a system of differential equations for each variable

included in our model. Equations that are part of a simula-
tion model share variables and parameters (e.g., the height
growth model and the basal area equation), and fitting the
equations for these variables one at a time may not be
satisfactory (Garcı́a 1988) and may result in biological
monstrosities (Stage 2003). This multiresponse nature of
forest growth models can be overcome by simultaneously
fitting a system of equations. Some applications of this
concept have been included by Garcı́a (1984) in New Zea-
land, Monserud et al. (1997) in Austria, and Garcı́a and Ruiz
(2003) in Spain. Another approach is to fit multivariate
mixed-effects models (Hall and Clutter 2004). Furthermore,
a simultaneous fit of equations might decrease the number
of variables (and parameters) of our height growth model,
based on the findings of Hasenauer et al. (1998), facilitating
the fitting process too. Notice, however that simultaneous fit
is possible when one has data with simultaneous measure-
ments too. An important objective of this article was to
build a comprehensive model with less-than-comprehensive
data.

The proposed model behaves according to the literature
that has been reported for competing vegetation effects (i.e.,
controlling competing vegetation would increase the yield

Figure 6. Height development for different levels of basal area in larger trees and a differential equation for understory
height when the tree is growing under understory cover of 10% (left) and 100% (right). Note that basal area in larger
trees of 0% of the stand basal area identifies the most dominant tree in a stand, and 90% identifies one of the most
suppressed trees in a stand.

Figure 7. Height development for different simultaneous levels of basal area in larger trees and under interacting
understory height, using different constant levels of understory cover for a dominant tree (left) and for an intermediate
tree (right).
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of a stand). The use of BAL allows us to model height
growth of all crown class trees and not just dominant trees,
as when using site index models.

Concluding Remarks

Density is an important variable to model height growth.
Modifying the original parameters of a differential linear
equation with power transformation to include competition
effects from understory and overstory improves the fit com-
pared with the model without density effects.

Our results have shown that there is a density effect on
height growth of trees of all dominance classes and that
more accurate height growth predictions can be obtained by
considering density. Therefore, the usual approach of pre-
dicting height growth through site index curves for Dou-
glas-fir in the Inland Northwest should be reconsidered.

Further analysis should be conducted to use other vari-
ables (instead of site index) to predict site productivity of
Douglas-fir. We show that use of site factors, such as
elevation, slope, aspect, and forest habitat type, produces a
good fit for estimating the asymptote. Our model uses an
integrated form of a differential equation with the following
properties: it does not depend on age, it uses data that have
different measurement period lengths, it can predict height
for different period lengths, site productivity is represented
by factors other than height growth because competition
affects height growth, and with only one model we can
make predictions for both juvenile and older trees (no
discontinuities).

Endnote
[1] We also tested inclusion of the number of small trees (conifers) in our

model, to represent the competition coming from small trees. How-
ever, we did not find any significant improvement in the model. We
speculate that no improvement was found because with the INGY
experiment, even though the correlation between good sites and
greater understory was reduced, it still was a problem for small
conifers because they were not thinned.
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