En esta pagina encontraras material relacionado a activades docentes que son de utilidad con alguna de las asignaturas o cursos que dicto.


Estadística

Biometría forestal

A height-diameter model has the following structure \[\begin{equation} h_i=f({\theta},d_i) + \epsilon_i, \label{eq:modh.0} \end{equation}\]
where: \(h_i\) is height at the \(i\)-th tree; \(d_i\) is diameter at breast height at the \(i\)-th tree; \(f()\) is a mathematical function; \({\theta}\) is a vector of coefficients (i.e., parameters) of model \(f()\); \(\epsilon_{i}\) is the random term for the \(i\)-th tree following a Gaussian probability density function having an expected value of zero and variance \(\sigma^2_{\epsilon}\). Noice that function \(f()\) could either be linear o non-linear.

\begin{tikzpicture}[scale=1.0544]\small
\begin{axis}[axis line style=gray,
    samples=120,
    width=9.0cm,height=6.4cm,
    xmin=-1.5, xmax=1.5,
    ymin=0, ymax=1.8,
    restrict y to domain=-0.2:2,
    ytick={1},
    xtick={-1,1},
    axis equal,
    axis x line=center,
    axis y line=center,
    xlabel=$x$,ylabel=$y$]
\addplot[red,domain=-2:1,semithick]{exp(x)};
\addplot[black]{x+1};
\addplot[] coordinates {(1,1.5)} node{$y=x+1$};
\addplot[red] coordinates {(-1,0.6)} node{$y=e^x$};
\path (axis cs:0,0) node [anchor=north west,yshift=-0.07cm] {0};
\end{axis}
\end{tikzpicture}